如图,已知 是等边三角形 的外接圆,点 在圆上,在 的延长线上有一点 ,使 , 交 于 .
(1)求证: 是 的切线;
(2)求证: .
如图1,四边形 的对角线 , 相交于点 , , .
(1)过点 作 交 于点 ,求证: ;
(2)如图2,将 沿 翻折得到 .
①求证: ;
②若 ,求证: .
感知:如图1,平分.,,易知:.
探究:如图2,平分,,,求证:.
应用:如图3,四边形中,,,,则 (用含的代数式表示)
如图,在平行四边形 中,边 的垂直平分线交 于点 ,交 的延长线于点 ,连接 , .
(1)求证: ;
(2)试判断四边形 的形状,并说明理由.
阅读下列材料:
已知:如图1,等边△ 内接于 ,点 是 上的任意一点,连接 , , ,可证: ,从而得到: 是定值.
(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;
证明:如图1,作 , 交 的延长线于点 .
△ 是等边三角形,
,
又 , ,
△ △
.
,是定值.
(2)延伸:如图2,把(1)中条件“等边△ ”改为“正方形 ”,其余条件不变,请问: 还是定值吗?为什么?
(3)拓展:如图3,把(1)中条件“等边△ ”改为“正五边形 ”,其余条件不变,则 (只写出结果).
如图,在正方形 ABCD中, AB=6, M是对角线 BD上的一个动点(0< DM< BD),连接 AM,过点 M作 MN⊥ AM交 BC于点 N.
(1)如图①,求证: MA= MN;
(2)如图②,连接 AN, O为 AN的中点, MO的延长线交边 AB于点 P,当 时,求 AN和 PM的长;
(3)如图③,过点 N作 NH⊥ BD于 H,当 AM=2 时,求△ HMN的面积.
在等腰直角中,,是线段上一动点(与点、不重合),连接,延长至点,使得,过点作于点,交于点.
(1)若,求的大小(用含的式子表示).
(2)用等式表示线段与之间的数量关系,并证明.
如图,是的直径,过外一点作的两条切线,,切点分别为,,连接,.
(1)求证:;
(2)连接,,若,,,求的长.
如图,在 中, , 是对角线 上的两点(点 在点 左侧),且 .
(1)求证:四边形 是平行四边形;
(2)当 , , 时,求 的长.
如图, 是正方形 的对角线,线段 在其所在的直线上平移,将平移得到的线段记为 ,连接 ,过点 作 ,垂足为 ,连接 、 .
(1)如图①所示,求证: ;
(2)如图②所示, 在 的延长线上,如图③所示, 在 的反向延长线上,猜想线段 、 之间有怎样的数量关系?请直接写出你的猜想,不需证明.
如图,在⊙ O中, B是⊙ O上的一点,∠ ABC=120°,弦 AC=2 ,弦 BM平分∠ ABC交 AC于点 D,连接 MA, MC.
(1)求⊙ O半径的长;
(2)求证: AB+ BC= BM.
如图,在矩形 中,点 在边 上,点 在 的延长线上,且 .
求证:(1) ;
(2)四边形 是平行四边形.
如图,△ ABC中, D是 BC边上一点, E是 AD的中点,过点 A作 BC的平行线交 BE的延长线于 F,且 AF= CD,连接 CF.
(1)求证:△ AEF≌△ DEB;
(2)若 AB= AC,试判断四边形 ADCF的形状,并证明你的结论.