初中数学

如图,已知 O 是等边三角形 ABC 的外接圆,点 D 在圆上,在 CD 的延长线上有一点 F ,使 DF = DA AE / / BC CF E

(1)求证: EA O 的切线;

(2)求证: BD = CF

来源:2018年湖南省常德市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,点上,.求证:

来源:2017年吉林省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

感知:如图1,平分,易知:

探究:如图2,平分,求证:

应用:如图3,四边形中,,则  (用含的代数式表示)

来源:2016年吉林省长春市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中,边 AB 的垂直平分线交 AD 于点 E ,交 CB 的延长线于点 F ,连接 AF BE

(1)求证: ΔAGE ΔBGF

(2)试判断四边形 AFBE 的形状,并说明理由.

来源:2017年湖南省张家界市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

阅读下列材料:

已知:如图1,等边△ A 1 A 2 A 3 内接于 O ,点 P A 1 A 2 ̂ 上的任意一点,连接 P A 1 P A 2 P A 3 ,可证: P A 1 + P A 2 = P A 3 ,从而得到: P A 1 + P A 2 P A 1 + P A 2 + P A 3 = 1 2 是定值.

(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;

证明:如图1,作 P A 1 M = 60 ° A 1 M A 2 P 的延长线于点 M

A 1 A 2 A 3 是等边三角形,

A 3 A 1 A 2 = 60 °

A 3 A 1 P = A 2 A 1 M

A 3 A 1 = A 2 A 1 A 1 A 3 P = A 1 A 2 P

A 1 A 3 P A 1 A 2 M

P A 3 = M A 2 = P A 2 + PM = P A 2 + P A 1

P A 1 + P A 2 P A 1 + P A 2 + P A 3 = 1 2 ,是定值.

(2)延伸:如图2,把(1)中条件“等边△ A 1 A 2 A 3 ”改为“正方形 A 1 A 2 A 3 A 4 ”,其余条件不变,请问: P A 1 + P A 2 P A 1 + P A 2 + P A 3 + P A 4 还是定值吗?为什么?

(3)拓展:如图3,把(1)中条件“等边△ A 1 A 2 A 3 ”改为“正五边形 A 1 A 2 A 3 A 4 A 5 ”,其余条件不变,则 P A 1 + P A 2 P A 1 + P A 2 + P A 3 + P A 4 + P A 5 =   (只写出结果).

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD中, AB=6, M是对角线 BD上的一个动点(0< DM 1 2 BD),连接 AM,过点 MMNAMBC于点 N

(1)如图①,求证: MAMN

(2)如图②,连接 ANOAN的中点, MO的延长线交边 AB于点 P,当 S AMN S BCD = 13 18 时,求 ANPM的长;

(3)如图③,过点 NNHBDH,当 AM=2 5 时,求△ HMN的面积.

来源:2019年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

在等腰直角中,是线段上一动点(与点不重合),连接,延长至点,使得,过点于点,交于点

(1)若,求的大小(用含的式子表示).

(2)用等式表示线段之间的数量关系,并证明.

来源:2017年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,的直径,过外一点的两条切线,切点分别为,连接

(1)求证:

(2)连接,若,求的长.

来源:2018年北京市中考数学试卷
  • 更新:2021-01-05
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, E F 是对角线 BD 上的两点(点 E 在点 F 左侧),且 AEB = CFD = 90 °

(1)求证:四边形 AECF 是平行四边形;

(2)当 AB = 5 tan ABE = 3 4 CBE = EAF 时,求 BD 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图, BD 是正方形 ABCD 的对角线,线段 BC 在其所在的直线上平移,将平移得到的线段记为 PQ ,连接 PA ,过点 Q QO BD ,垂足为 O ,连接 OA OP

(1)如图①所示,求证: AP = 2 OA

(2)如图②所示, PQ BC 的延长线上,如图③所示, PQ BC 的反向延长线上,猜想线段 AP OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2019年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在⊙ O中, B是⊙ O上的一点,∠ ABC=120°,弦 AC=2 3 ,弦 BM平分∠ ABCAC于点 D,连接 MAMC

(1)求⊙ O半径的长;

(2)求证: AB+ BCBM

来源:2019年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E 在边 BC 上,点 F BC 的延长线上,且 BE = CF

求证:(1) ΔABE ΔDCF

(2)四边形 AEFD 是平行四边形.

来源:2021年新疆生产建设兵团中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,△ ABC中, DBC边上一点, EAD的中点,过点 ABC的平行线交 BE的延长线于 F,且 AFCD,连接 CF

(1)求证:△ AEF≌△ DEB

(2)若 ABAC,试判断四边形 ADCF的形状,并证明你的结论.

来源:2018年内蒙古通辽市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题