如图,在正方形 ABCD中, AB=6, M是对角线 BD上的一个动点(0< DM< 1 2 BD),连接 AM,过点 M作 MN⊥ AM交 BC于点 N.
(1)如图①,求证: MA= MN;
(2)如图②,连接 AN, O为 AN的中点, MO的延长线交边 AB于点 P,当 S △ AMN S △ BCD = 13 18 时,求 AN和 PM的长;
(3)如图③,过点 N作 NH⊥ BD于 H,当 AM=2 5 时,求△ HMN的面积.
(1)如图,∠MON=80º,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P. 试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数;若发生变化,求出变化范围
如图,CD是△ABC的高,点E、F、G分别在BC、AB、AC上,且EF⊥AB,DG∥BC. 试判断∠1、∠2的数量关系,并说明理由.
如图,△ABC中,∠C=45°,AD⊥BC,垂足为D,且DE平分∠ADB,DE与CA平行吗?请说明你的理由.
如图,现有a×a、b×b、正方形纸片和a×b的矩形纸片各若干块,试选用这些纸片在下面的虚线方框中拼成一个正方形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图痕迹),使拼出的矩形面积为4a2+4ab+b2,并标出此正方形的边长.
先化简再求值:(x+3)2+(x―2)(x+2)-2x2,其中x=-.