初中数学

如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为 S 1 ,另两张直角三角形纸片的面积都为 S 2 ,中间一张正方形纸片的面积为 S 3 ,则这个平行四边形的面积一定可以表示为 (    )

A. 4 S 1 B. 4 S 2 C. 4 S 2 + S 3 D. 3 S 1 + 4 S 3

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, AB = 5 AD = 12 ,点 P 在对角线 BD 上,且 BP = BA ,连接 AP 并延长,交 DC 的延长线于点 Q ,连接 BQ ,则 BQ 的长为   

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = 2 2 AC = 6 ,点 E 在线段 AC 上,且 AE = 1 D 是线段 BC 上的一点,连接 DE ,把四边形 ABDE 沿直线 DE 翻折,得到四边形 F GDE ,当点 G 恰好落在线段 AC 上时, AF =   

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在菱形 OABC 中, OB 是对角线, OA = OB = 2 O 与边 AB 相切于点 D ,则图中阴影部分的面积为     

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 1 = 2 3 = 4 ,求证: BC = BD

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,点 B F C E 共线, B = E BF = EC ,添加一个条件,不能判断 ΔABC ΔDEF 的是 (    )

A.

AB = DE

B.

A = D

C.

AC = DF

D.

AC / / FD

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,以点 A ( 3 , 1 ) 为端点的四条射线 AB AC AD AE 分别过点 B ( 1 , 1 ) ,点 C ( 1 , 3 ) ,点 D ( 4 , 4 ) ,点 E ( 5 , 2 ) ,则 BAC    DAE (填" > "、" = "、" < "中的一个).

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° ,点 D AB 边的中点,连接 CD ,若 BC = 4 CD = 3 ,则 cos DCB 的值为   

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

等腰三角形的一边长是3,另两边的长是关于 x 的方程 x 2 - 4 x + k = 0 的两个根,则 k 的值为 (    )

A.3B.4C.3或4D.7

来源:2020年山东省菏泽市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,以 AB 为直径的 O AC 于点 M ,弦 MN / / BC AB 于点 E ,且 ME = 3 AE = 4 AM = 5

(1)求证: BC O 的切线;

(2)求 O 的直径 AB 的长度.

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 O 的半径为1,点 P O 外一点,且 OP = 2 .若 PT O 的切线, T 为切点,连结 OT ,则 PT =   

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, OB = 2 3 A = 30 ° O 的半径为1,点 P AB 边上的动点,过点 P O 的一条切线 PQ (其中点 Q 为切点),则线段 PQ 长度的最小值为   

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 P AB 上一动点(不与 A B 重合),对角线 AC BD 相交于点 O ,过点 P 分别作 AC BD 的垂线,分别交 AC BD 于点 E F ,交 AD BC 于点 M N .下列结论:

ΔAPE ΔAME

PM + PN = AC

P E 2 + P F 2 = P O 2

ΔPOF ΔBNF

⑤点 O M N 两点的连线上.

其中正确的是 (    )

A.①②③④B.①②③⑤C.①②③④⑤D.③④⑤

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1,点 P ΔABC 的顶点 A 出发,沿 A B C 匀速运动到点 C ,图2是点 P 运动时线段 CP 的长度 y 随时间 x 变化的关系图象,其中点 Q 为曲线部分的最低点,则 ΔABC 的边 AB 的长度为 (    )

A.12B.8C.10D.13

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, AOB = 90 ° ,以点 O 为圆心, OA 为半径的圆交 AB 于点 C ,点 D 在边 OB 上,且 CD = BD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)已知 tan ODC = 24 7 AB = 40 ,求 O 的半径.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

初中数学三角形试题