初中数学

如图,在矩形 ABCD 中,对角线 AC BD 相交于点 O AOB = 60 ° ,对角线 AC 所在的直线绕点 O 顺时针旋转角 α ( 0 ° < α < 120 ° ) ,所得的直线 l 分别交 AD BC 于点 E F

(1)求证: ΔAOE ΔCOF

(2)当旋转角 α 为多少度时,四边形 AFCE 为菱形?试说明理由.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 外取一点 E ,连接 DE AE CE ,过点 D DE 的垂线交 AE 于点 P ,若 DE = DP = 1 PC = 6 .下列结论:① ΔAPD ΔCED ;② AE CE ;③点 C 到直线 DE 的距离为 3 ;④ S 正方形 ABCD = 5 + 2 2 ,其中正确结论的序号为   

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图, ΔABC 内接于 O A = 50 ° ,点 D BC 的中点,连接 OD OB OC ,则 BOD =   

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 60 ° ,点 D AB 的中点,连接 CD ,将线段 CD 绕点 D 顺时针旋转 α ( 60 ° < α < 120 ° ) 得到线段 ED ,且 ED 交线段 BC 于点 G CDE 的平分线 DM BC 于点 H

(1)如图1,若 α = 90 ° ,则线段 ED BD 的数量关系是    GD CD =   

(2)如图2,在(1)的条件下,过点 C CF / / DE DM 于点 F ,连接 EF BE

①试判断四边形 CDEF 的形状,并说明理由;

②求证: BE FH = 3 3

(3)如图3,若 AC = 2 tan ( α - 60 ° ) = m ,过点 C CF / / DE DM 于点 F ,连接 EF BE ,请直接写出 BE FH 的值(用含 m 的式子表示).

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

《九章算术》是我国古代数学名著,书中有下列问题:"今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何?"其意思为:今有一门,高比宽多6尺8寸,门对角线距离恰好为1丈.问门高、宽各是多少? ( 1 = 10 尺,1尺 = 10 寸)如图,设门高 AB x 尺,根据题意,可列方程为   

来源:2021年湖南省岳阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知点 A D C B 在同一条直线上, AD = BC AE = BF AE / / BF

(1)求证: ΔAEC ΔBFD

(2)判断四边形 DECF 的形状,并证明.

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC ,分别以点 A B 为圆心,大于 1 2 AB 的长为半径画弧,两弧相交于点 M 和点 N ,作直线 MN 分别交 BC AB 于点 D 和点 E ,若 B = 50 ° ,则 CAD 的度数是 (    )

A.

30 °

B.

40 °

C.

50 °

D.

60 °

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E F 是对角线 AC 上的两点,且 AE = CF .连接 DE DF BE BF

(1)证明: ΔADE ΔCBF

(2)若 AB = 4 2 AE = 2 ,求四边形 BEDF 的周长.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,点 D E F 分别为 ΔABC 三边的中点.若 ΔABC 的周长为10,则 ΔDEF 的周长为   

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图①, E F 是等腰 Rt Δ ABC 的斜边 BC 上的两动点, EAF = 45 ° CD BC CD = BE

(1)求证: ΔABE ΔACD

(2)求证: E F 2 = B E 2 + C F 2

(3)如图②,作 AH BC ,垂足为 H ,设 EAH = α FAH = β ,不妨设 AB = 2 ,请利用(2)的结论证明:当 α + β = 45 ° 时, tan ( α + β ) = tan α + tan β 1 - tan α tan β 成立.

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC = 2 P BC 上任意一点, PE AB 于点 E PF AC 于点 F ,若 S ΔABC = 1 ,则 PE + PF =   

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

2、5、 m 是某三角形三边的长,则 ( m - 3 ) 2 + ( m - 7 ) 2 等于 (    )

A.

2 m - 10

B.

10 - 2 m

C.

10

D.

4

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 为平行四边形,点 E A C F 在同一直线上, AE = CF

求证:(1) ΔADE ΔCBF

(2) ED / / BF

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,点 A B D E 在同一条直线上, AB = DE AC / / DF BC / / EF .求证: ΔABC ΔDEF

来源:2021年湖南省衡阳市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, AB = AC N BC 边上的一点, D AN 的中点,过点 A BC 的平行线交 CD 的延长线于 T ,且 AT = BN ,连接 BT

(1)求证: BN = CN

(2)在图1中 AN 上取一点 O ,使 AO = OC ,作 N 关于边 AC 的对称点 M ,连接 MT MO OC OT CM 得图2.

①求证: ΔTOM ΔAOC

②设 TM AC 相交于点 P ,求证: PD / / CM PD = 1 2 CM

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

初中数学三角形试题