如图, 中, 是 边上的高, 、 分别是 、 的平分线, , ,则
A. B. C. D.
如图,在 中, 是 的垂直平分线,且分别交 , 于点 和 , , ,则 为
A. B. C. D.
如图,在平行四边形 中, , , 是锐角, 于点 , 是 的中点,连结 、 .若 ,则 长为
A.2B. C. D.
如图,在 中, , ,以点 为圆心, 长为半径画弧,交 于点 ,连接 ,则 的度数是
A. B. C. D.
如图, 和 都是等边三角形,且点 、 、 在一条直线上,连结 、 ,点 、 分别是线段 、 上的两点,且 , ,则 的形状是
A.等腰三角形B.直角三角形C.等边三角形D.不等边三角形
如图,要测定被池塘隔开的 , 两点的距离.可以在 外选一点 ,连接 , ,并分别找出它们的中点 , ,连接 .现测得 , , ,则
A. B. C. D.
如图,在 中,尺规作图如下:分别以点 ,点 为圆心,大于 的长为半径作弧,两弧相交于 , 两点,作直线 ,交 于点 ,连接 ,则下列结论正确的是
A. 平分 B. 垂直平分 C. 垂直平分 D. 平分
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为 ,较短直角边长为 ,若 ,大正方形的面积为13,则小正方形的面积为
A.3B.4C.5D.6
如图,在 中, , , ,以点 为圆心, 长为半径作弧,交 于点 ;再分别以点 和点 为圆心,大于 的长为半径作弧,两弧相交于点 ,作射线 交 于点 ,则 的长为
A.5B.6C.7D.8
在平面直角坐标系 中,将一块含有 角的直角三角板如图放置,直角顶点 的坐标为 ,顶点 的坐标为 ,顶点 恰好落在第一象限的双曲线上,现将直角三角板沿 轴正方向平移,当顶点 恰好落在该双曲线上时停止运动,则此时点 的对应点 的坐标为
A. , B. C. , D.
如图, 是反比例函数 在第一象限内的图象上一点,以 为顶点作等边 ,使 落在 轴上,则 的面积为
A. B. C. D.