初中数学

如图,在 O 中, AB 是直径, CD 是弦, AB CD ,垂足为 P ,过点 D O 的切线与 AB 延长线交于点 E ,连接 CE

(1)求证: CE O 的切线;

(2)若 O 半径为3, CE = 4 ,求 sin DEC

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AC BD 相交于点 O ,过点 B BF AC 于点 M ,交 CD 于点 F ,过点 D DE / / BF AC 于点 N .交 AB 于点 E ,连接 FN EM .有下列结论:①四边形 NEMF 为平行四边形;② D N 2 = MC NC ;③ ΔDNF 为等边三角形;④当 AO = AD 时,四边形 DEBF 是菱形.其中,正确结论的序号   

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在边长为4的正方形 ABCD 中,点 E BC 的中点,点 F CD 上,且 CF = 3 DF AE BF 相交于点 G ,则 ΔAGF 的面积是  

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,等边三角形 ABC 的边长为4, C 的半径为 3 P AB 边上一动点,过点 P C 的切线 PQ ,切点为 Q ,则 PQ 的最小值为  

来源:2021年四川省凉山州中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, AB = AC ,点 D BC 边上一点(不与点 B C 重合),连结 AD

(1)如图1,若 C = 60 ° ,点 D 关于直线 AB 的对称点为点 E ,连结 AE DE ,则 BDE =   

(2)若 C = 60 ° ,将线段 AD 绕点 A 顺时针旋转 60 ° 得到线段 AE ,连结 BE

①在图2中补全图形;

②探究 CD BE 的数量关系,并证明;

(3)如图3,若 AB BC = AD DE = k ,且 ADE = C .试探究 BE BD AC 之间满足的数量关系,并证明.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图1,在 ΔABC 中, ACB = 90 ° AC = BC ,点 D AB 边上一点(含端点 A B ) ,过点 B BE 垂直于射线 CD ,垂足为 E ,点 F 在射线 CD 上,且 EF = BE ,连接 AF BF

(1)求证: ΔABF ΔCBE

(2)如图2,连接 AE ,点 P M N 分别为线段 AC AE EF 的中点,连接 PM MN PN .求 PMN 的度数及 MN PM 的值;

(3)在(2)的条件下,若 BC = 2 ,直接写出 ΔPMN 面积的最大值.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 O 是对角线 BD 的中点,点 P 在线段 OD 上,连接 AP 并延长交 CD 于点 E ,过点 P PF AP BC 于点 F ,连接 AF EF AF BD G ,现有以下结论:① AP = PF ;② DE + BF = EF ;③ PB - PD = 2 BF ;④ S ΔAEF 为定值;⑤ S 四边形 PEFG = S ΔAPG .以上结论正确的有   (填入正确的序号即可).

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = BC = 4 ,点 D BC 边的中点,点 P AC 边上一个动点,连接 PD ,以 PD 为边在 PD 的下方作等边三角形 PDQ ,连接 CQ .则 CQ 的最小值是 (    )

A.

3 2

B.

1

C.

2

D.

3 2

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在边长为6的等边 ΔABC 中,点 E F 分别是边 AC BC 上的动点,且 AE = CF ,连接 BE AF 交于点 P ,连接 CP ,则 CP 的最小值为   

来源:2021年四川省达州市中考数学试卷
  • 更新:2021-08-11
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ACB = 90 ° AB = 5 BC = 3 ,将 ΔABC 绕点 B 顺时针旋转得到△ A ' BC ' ,其中点 A C 的对应点分别为点 A ' C '

(1)如图1,当点 A ' 落在 AC 的延长线上时,求 AA ' 的长;

(2)如图2,当点 C ' 落在 AB 的延长线上时,连接 CC ' ,交 A ' B 于点 M ,求 BM 的长;

(3)如图3,连接 AA ' CC ' ,直线 CC ' AA ' 于点 D ,点 E AC 的中点,连接 DE .在旋转过程中, DE 是否存在最小值?若存在,求出 DE 的最小值;若不存在,请说明理由.

来源:2021年四川省成都市中考数学试卷
  • 更新:2021-08-12
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点,连接 AC BC D AB 延长线上一点,连接 CD ,且 BCD = A

(1)求证: CD O 的切线;

(2)若 O 的半径为 5 ΔABC 的面积为 2 5 ,求 CD 的长;

(3)在(2)的条件下, E O 上一点,连接 CE 交线段 OA 于点 F ,若 EF CF = 1 2 ,求 BF 的长.

来源:2021年四川省成都市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中,点 D AB 边上的一点,且 AD = 3 BD ,连接 CD 并取 CD 的中点 E ,连接 BE ,若 ACD = BED = 45 ° ,且 CD = 6 2 ,则 AB 的长为   

来源:2021年山西省中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

有公共顶点 A 的正方形 ABCD 与正方形 AEGF 按如图1所示放置,点 E F 分别在边 AB AD 上,连接 BF DE M BF 的中点,连接 AM DE 于点 N

【观察猜想】

(1)线段 DE AM 之间的数量关系是   ,位置关系是   

【探究证明】

(2)将图1中的正方形 AEGF 绕点 A 顺时针旋转 45 ° ,点 G 恰好落在边 AB 上,如图2,其他条件不变,线段 DE AM 之间的关系是否仍然成立?并说明理由.

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 5 BC = 5 3 ,点 P 在线段 BC 上运动(含 B C 两点),连接 AP ,以点 A 为中心,将线段 AP 逆时针旋转 60 ° AQ ,连接 DQ ,则线段 DQ 的最小值为 (    )

A.

5 2

B.

5 2

C.

5 3 3

D.

3

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.

(1)阅读材料

立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.

例如,正方体 ABCD A ' B ' C ' D ' (图 1 ) ,因为在平面 AA ' C ' C 中, CC ' / / A A ' AA ' AB 相交于点 A ,所以直线 AB AA ' 所成的 BAA ' 就是既不相交也不平行的两条直线 AB CC ' 所成的角.

解决问题

如图1,已知正方体 ABCD A ' B ' C ' D ' ,求既不相交也不平行的两直线 BA ' AC 所成角的大小.

(2)如图2, M N 是正方体相邻两个面上的点;

①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是   

②在所选正确展开图中,若点 M AB BC 的距离分别是2和5,点 N BD BC 的距离分别是4和3, P AB 上一动点,求 PM + PN 的最小值.

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学三角形试题