如图,等腰直角三角形 中, , ,将 绕点 顺时针旋转 ,得到 ,连结 ,过点 作 交 的延长线于点 ,连结 ,则 的度数
A.随着 的增大而增大B.随着 的增大而减小
C.不变D.随着 的增大,先增大后减小
长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为
A.4B.5C.6D.7
如图, 的半径 , 是 上的动点(不与点 重合),过点 作 的切线 , ,连结 , .当 是直角三角形时,其斜边长为 .
和 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形 内.若求五边形 的周长,则只需知道
A. 的周长B. 的周长
C.四边形 的周长D.四边形 的周长
如图,在 中, , 为中线,延长 至点 ,使 ,连结 , 为 中点,连结 .若 , ,则 的长为
A.2B.2.5C.3D.4
如图,在 中, , , .
(1)求 边上的高线长.
(2)点 为线段 的中点,点 在边 上,连结 ,沿 将 折叠得到 .
①如图2,当点 落在 上时,求 的度数.
②如图3,连结 ,当 时,求 的长.
如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形 与正方形 .连结 , 相交于点 、 与 相交于点 .若 ,则 的值是
A. B. C. D.
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.
已知:如图,在 中, , 与 相切于点 .求证: .小明同学的证明过程如下框:
证明:连结 , , , 又 , , . |
小明的证法是否正确?若正确,请在框内打“ ”;若错误,请写出你的证明过程.
如图,在等腰 中, , ,按下列步骤作图:
①以点 为圆心,适当的长度为半径作弧,分别交 , 于点 , ,再分别以点 , 为圆心,大于 的长为半径作弧相交于点 ,作射线 ;
②分别以点 , 为圆心,大于 的长为半径作弧相交于点 , ,作直线 ,交射线 于点 ;
③以点 为圆心,线段 长为半径作圆.
则 的半径为
A. B.10C.4D.5
如图,正三角形 的边长为3,将 绕它的外心 逆时针旋转 得到△ ,则它们重叠部分的面积是
A. B. C. D.
已知在 中, , 是 边上的一点,将 沿着过点 的直线折叠,使点 落在 边的点 处(不与点 , 重合),折痕交 边于点 .
(1)特例感知 如图1,若 , 是 的中点,求证: ;
(2)变式求异 如图2,若 , , ,过点 作 于点 ,求 和 的长;
(3)化归探究 如图3,若 , ,且当 时,存在两次不同的折叠,使点 落在 边上两个不同的位置,请直接写出 的取值范围.
如图,已知 是 斜边 上的高线, .以 为圆心, 为半径的圆交 于点 ,过点 作 的切线 ,交 于点 .则下列结论中错误的是
A. B. C. D.
四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形 的内角,正方形 变为菱形 .若 ,则菱形 的面积与正方形 的面积之比是
A.1B. C. D.