姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内, 值随 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是
A. B. C. D.
如图,一次函数 的图象与 轴、 轴分别交于 , 两点,与反比例函数 的图象分别交于 , 两点,点 ,点 是线段 的中点.
(1)求一次函数 与反比例函数 的解析式;
(2)求 的面积;
(3)直接写出当 取什么值时, .
如图,点 在双曲线 上,过点 作 轴于点 ,点 在线段 上且 ,双曲线 经过点 ,则 .
如图,在平面直角坐标系 中,点 在反比例函数 的图象上,点 在 的延长线上, 轴,垂足为 , 与反比例函数的图象相交于点 ,连接 , .
(1)求该反比例函数的解析式;
(2)若 ,设点 的坐标为 ,求线段 的长.
如图,在平面直角坐标系中,等边 和菱形 的边 , 都在 轴上,点 在 边上, ,反比例函数 的图象经过点 ,则 的值为 .
如图,在平面直角坐标系 中,函数 为常数, , 的图象经过点 和 ,直线 与 轴, 轴分别交于 , 两点,点 是该函数图象上的一个动点,过点 分别作 轴和 轴的垂线,垂足分别为 , .
(1)求 的度数;
(2)当 , 时,存在点 使得 ,求此时点 的坐标;
(3)当 时,矩形 与 的重叠部分的面积能否等于4.1?请说明你的理由.
如图,某反比例函数图象的一支经过点 和点 (点 在点 的右侧),作 轴,垂足为点 ,连接 , .
(1)求该反比例函数的解析式;
(2)若 的面积为6,求直线 的表达式.
如图,在平面直角坐标系中有三点 , , ,其中有两点同时在反比例函数 的图象上,将这两点分别记为 , ,另一点记为 .
(1)求出 的值;
(2)求直线 对应的一次函数的表达式;
(3)设点 关于直线 的对称点为 , 是 轴上的一个动点,直接写出 的最小值(不必说明理由).
反比例函数 为常数,且 的图象经过点 、 .
(1)求反比例函数的解析式及 点的坐标;
(2)在 轴上找一点 ,使 的值最小,求满足条件的点 的坐标.
如图,点 在函数 的图象上,过点 分别作 轴和 轴的平行线交函数 的图象于点 、 .
(1)若点 的坐标为 .
①求 、 两点的坐标;
②求直线 的解析式;
(2)求 的面积.
对于反比例函数 ,下列说法不正确的是
A.图象分布在第二、四象限
B.当 时, 随 的增大而增大
C.图象经过点
D.若点 , , , 都在图象上,且 ,则
参照学习函数的过程与方法,探究函数 的图象与性质.
因为 ,即 ,所以我们对比函数 来探究.
列表:
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
|
|
|
|
|
1 |
2 |
4 |
|
|
|
|
|
|
|
|
|
|
2 |
3 |
5 |
|
|
0 |
|
|
|
描点:在平面直角坐标系中,以自变量 的取值为横坐标,以 相应的函数值为纵坐标,描出相应的点,如图所示:
(1)请把 轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;
(2)观察图象并分析表格,回答下列问题:
①当 时, 随 的增大而 ;(填“增大”或“减小”
② 的图象是由 的图象向 平移 个单位而得到;
③图象关于点 中心对称.(填点的坐标)
(3)设 , , , 是函数 的图象上的两点,且 ,试求 的值.