首条贯通丝绸之路经济带的高铁线 宝兰客专进入全线拉通试验阶段.宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义.试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为 (小时),两车之间的距离为 (千米),图中的折线表示 与 之间的函数关系,根据图象进行以下探究:
(信息读取)
(1)西宁到西安两地相距 千米,两车出发后 小时相遇;
(2)普通列车到达终点共需 小时,普通列车的速度是 千米 小时.
(解决问题)
(3)求动车的速度;
(4)普通列车行驶 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安?
在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米. 取 .
(1)求400米跑道中一段直道的长度;
(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:
跑道宽度 米 |
0 |
1 |
2 |
3 |
4 |
5 |
|
跑道周长 米 |
400 |
|
|
|
|
|
|
若设 表示跑道宽度(单位:米), 表示该跑道周长(单位:米),试写出 与 的函数关系式:
(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?
列方程(组)及不等式解应用题
春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
用1块 型钢板可制成2块 型钢板和1块 型钢板;用1块 型钢板可制成1块 型钢板和3块 型钢板.现准备购买 、 型钢板共100块,并全部加工成 、 型钢板.要求 型钢板不少于120块, 型钢板不少于250块,设购买 型钢板 块 为整数).
(1)求 、 型钢板的购买方案共有多少种?
(2)出售 型钢板每块利润为100元, 型钢板每块利润为120元.若将 、 型钢板全部出售,请你设计获利最大的购买方案.
某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元 个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.
(1)求两种球拍每副各多少元?
(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.
“低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的公路骑行前往乙地,她与乙地之间的距离 与出发时间 之间的函数关系式如图1中线段 所示.在小丽出发的同时,小明从乙地沿同一条公路骑车匀速前往甲地,两人之间的距离 与出发时间 之间的函数关系式如图2中折线段 所示.
(1)小丽和小明骑车的速度各是多少?
(2)求点 的坐标,并解释点 的实际意义.
某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本 (元)与月产销量 (个)满足如下关系:
月产销量 (个) |
|
160 |
200 |
240 |
300 |
|
每个玩具的固定成本 (元) |
|
60 |
48 |
40 |
32 |
|
(1)写出月产销量 (个)与销售单价 (元)之间的函数关系式;
(2)求每个玩具的固定成本 (元)与月产销量 (个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有 , 两种型号的健身器材可供选择.
(1)劲松公司2015年每套 型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套 型健身器材年平均下降率 ;
(2)2017年市政府经过招标,决定年内采购并安装劲松公司 , 两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套 型健身器材售价为1.6万元,每套 型健身器材售价为 万元.
① 型健身器材最多可购买多少套?
②安装完成后,若每套 型和 型健身器材一年的养护费分别是购买价的 和 ,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?
星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸 骑自行车先走,平均每小时骑行 ;李玉刚同学和妈妈 乘公交车后行,公交车平均速度是 .爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为 .设爸爸骑行时间为 .
(1)请分别写出爸爸的骑行路程 、李玉刚同学和妈妈的乘车路程 与 之间的函数解析式,并注明自变量的取值范围;
(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;
(3)请回答谁先到达老家.
小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于 ,超过 时,所有这种水果的批发单价均为3元 .图中折线表示批发单价 (元 与质量 的函数关系.
(1)求图中线段 所在直线的函数表达式;
(2)小李用800元一次可以批发这种水果的质量是多少?
“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理 , 两种型号的净水器,每台 型净水器比每台 型净水器进价多200元,用5万元购进 型净水器与用4.5万元购进 型净水器的数量相等.
(1)求每台 型、 型净水器的进价各是多少元?
(2)槐荫公司计划购进 , 两种型号的净水器共50台进行试销,其中 型净水器为 台,购买资金不超过9.8万元.试销时 型净水器每台售价2500元, 型净水器每台售价2180元,槐荫公司决定从销售 型净水器的利润中按每台捐献 元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为 ,求 的最大值.
某年5月,我国南方某省 、 两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市 、 获知 、 两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知 市有救灾物资240吨, 市有救灾物资260吨,现将这些救灾物资全部调往 、 两市.已知从 市运往 、 两市的费用分别为每吨20元和25元,从 市运往 、 两市的费用别为每吨15元和30元,设从 市运往 市的救灾物资为 吨.
(1)请填写下表
(吨) |
(吨) |
合计(吨) |
|
(吨) |
|
|
240 |
(吨) |
|
|
260 |
总计(吨) |
200 |
300 |
500 |
(2)设 、 两市的总运费为 元,求 与 之间的函数关系式,并写出自变量 的取值范围;
(3)经过抢修,从 市到 市的路况得到了改善,缩短了运输时间,运费每吨减少 元 ,其余路线运费不变.若 、 两市的总运费的最小值不小于10320元,求 的取值范围.
某公司开发出一款新的节能产品,该产品的成本价为6元 件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为8元 件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线 表示日销售量 (件)与销售时间 (天)之间的函数关系,已知线段 表示的函数关系中,时间每增加1天,日销售量减少5件.
(1)第24天的日销售量是 件,日销售利润是 元.
(2)求 与 之间的函数关系式,并写出 的取值范围;
(3)日销售利润不低于640元的天数共有多少天?试销售期间,日销售最大利润是多少元?
快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为 小时,快车行驶的路程为 千米,慢车行驶的路程为 千米.如图中折线 表示 与 之间的函数关系,线段 表示 与 之间的函数关系.
请解答下列问题:
(1)求快车和慢车的速度;
(2)求图中线段 所表示的 与 之间的函数表达式;
(3)线段 与线段 相交于点 ,直接写出点 的坐标,并解释点 的实际意义.