初中数学

如图,在平面直角坐标系中,一次函数 y = kx + b 的图象经过点 A ( 2 , 6 ) ,且与 x 轴相交于点 B ,与正比例函数 y = 3 x 的图象相交于点 C ,点 C 的横坐标为1.

(1)求 k b 的值;

(2)若点 D y 轴负半轴上,且满足 S ΔCOD = 1 3 S ΔBOC ,求点 D 的坐标.

来源:2018年江苏省淮安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

设一次函数 y = kx + b ( k b 是常数, k 0 ) 的图象过 A ( 1 , 3 ) B ( 1 , 1 ) 两点.

(1)求该一次函数的表达式;

(2)若点 ( 2 a + 2 , a 2 ) 在该一次函数图象上,求 a 的值.

(3)已知点 C ( x 1 y 1 ) 和点 D ( x 2 y 2 ) 在该一次函数图象上,设 m = ( x 1 x 2 ) ( y 1 y 2 ) ,判断反比例函数 y = m + 1 x 的图象所在的象限,说明理由.

来源:2018年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,直线 l 1 : y = 2 x + 1 与直线 l 2 : y = mx + 4 相交于点 P ( 1 , b )

(1)求 b m 的值;

(2)垂直于 x 轴的直线 x = a 与直线 l 1 l 2 分别交于点 C D ,若线段 CD 长为2,求 a 的值.

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,一次函数 y = kx + b ( k b 都是常数,且 k 0 ) 的图象经过点 ( 1 , 0 ) ( 0 , 2 )

(1)当 2 < x 3 时,求 y 的取值范围;

(2)已知点 P ( m , n ) 在该函数的图象上,且 m n = 4 ,求点 P 的坐标.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

阅读理解题

在平面直角坐标系 xOy 中,点 P ( x 0 y 0 ) 到直线 Ax + By + C = 0 ( A 2 + B 2 0 ) 的距离公式为: d = | A x 0 + B y 0 + C | A 2 + B 2

例如,求点 P ( 1 , 3 ) 到直线 4 x + 3 y 3 = 0 的距离.

解:由直线 4 x + 3 y 3 = 0 知: A = 4 B = 3 C = 3

所以 P ( 1 , 3 ) 到直线 4 x + 3 y 3 = 0 的距离为: d = | 4 × 1 + 3 × 3 3 | 4 2 + 3 2 = 2

根据以上材料,解决下列问题:

(1)求点 P 1 ( 0 , 0 ) 到直线 3 x 4 y 5 = 0 的距离.

(2)若点 P 2 ( 1 , 0 ) 到直线 x + y + C = 0 的距离为 2 ,求实数 C 的值.

来源:2018年湖南省张家界市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

直线 l 的解析式为 y = 2 x + 2 ,分别交 x 轴、 y 轴于点 A B

(1)写出 A B 两点的坐标,并画出直线 l 的图象;

(2)将直线 l 向上平移4个单位得到 l 1 l 1 x 轴于点 C .作出 l 1 的图象, l 1 的解析式是  

(3)将直线 l 绕点 A 顺时针旋转 90 ° 得到 l 2 l 2 l 1 于点 D .作出 l 2 的图象, tan CAD =   

来源:2017年广西河池市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,以点 O 为圆心的圆分别交 x 轴的正半轴于点 M ,交 y 轴的正半轴于点 N .劣弧 MN ̂ 的长为 6 5 π ,直线 y = 4 3 x + 4 x 轴、 y 轴分别交于点 A B

(1)求证:直线 AB O 相切;

(2)求图中所示的阴影部分的面积(结果用 π 表示)

来源:2016年四川省巴中市中考数学试卷
  • 更新:2021-04-20
  • 题型:未知
  • 难度:未知

已知一次函数 y 2 x + 4

(1)在如图所示的平面直角坐标系中,画出函数的图象;

(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;

(3)在(2)的条件下,求出△AOB的面积;

(4)利用图象直接写出:当 y 0 时,x的取值范围.

来源:2016年湖南省怀化市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点Bx轴的正半轴上. OAB 90 ° OA AB OBOC的长分别是一元二次方程 x 2 11 x + 30 0 的两个根 OB OC

(1)求点A和点B的坐标.

(2)点P是线段OB上的一个动点(点P不与点OB重合),过点P的直线ly轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知 t 4 时,直线l恰好过点C.当 0 t 3 时,求m关于t的函数关系式.

(3)当 m 3 . 5 时,请直接写出点P的坐标.

来源:2016年黑龙江省七台河市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

已知 P 2 a a 2 - b 2 1 a + b a≠± b

(1)化简 P

(2)若点( ab)在一次函数 yx 2 的图象上,求 P的值.

来源:2019年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

阅读下面材料:

我们知道一次函数 ykx+ bk≠0, kb是常数)的图象是一条直线,到高中学习时,直线通常写成 Ax+ By+ C=0( A≠0, ABC是常数)的形式,点 Px 0y 0)到直线 Ax+ By+ C=0的距离可用公式 d A x 0 + B y 0 + C A 2 + B 2 计算.

例如:求点 P(3,4)到直线 y=﹣2 x+5的距离.

解:∵ y=﹣2 x+5

∴2 x+ y﹣5=0,其中 A=2, B=1, C=﹣5

∴点 P(3,4)到直线 y=﹣2 x+5的距离为:

d = A x 0 + B y 0 + C A 2 + B 2 = | 2 × 3 + 1 × 4 - 5 | 2 2 + 1 2 = 5 5 = 5

根据以上材料解答下列问题:

(1)求点 Q(﹣2,2)到直线3 xy+7=0的距离;

(2)如图,直线 y=﹣ x沿 y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.

来源:2019年内蒙古赤峰市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点,点是四边形内的一点,且的面积相等,求的值.

来源:2016年福建省厦门市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,过点的直线轴交于点 tan OAB = 1 2 ,直线上的点位于轴左侧,且到轴的距离为1.

(1)求直线的表达式;

(2)若反比例函数 y = m x 的图象经过点,求的值.

来源:2016年福建省三明市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形的边轴上,轴上.为坐标原点,,线段的长分别是方程的两个根

(1)求点的坐标;

(2)上一点,上一点,,将翻折,使点落在上的点处,双曲线的一个分支过点.求的值;

(3)在(2)的条件下,为坐标轴上一点,在平面内是否存在点,使以为顶点四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2020年黑龙江省牡丹江市、鸡西市朝鲜族学校中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,反比例函数与一次函数的图象在第二象限的交点为,在第四象限的交点为,直线为坐标原点)与函数的图象交于另一点.过点轴的平行线,过点轴的平行线,两直线相交于点的面积为6.

(1)求反比例函数的表达式;

(2)求点的坐标和的面积.

来源:2020年黑龙江省大庆市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

初中数学一次函数图象上点的坐标特征解答题