如图,在平面直角坐标系中,一次函数 y = kx + b 的图象经过点 A ( − 2 , 6 ) ,且与 x 轴相交于点 B ,与正比例函数 y = 3 x 的图象相交于点 C ,点 C 的横坐标为1.
(1)求 k 、 b 的值;
(2)若点 D 在 y 轴负半轴上,且满足 S ΔCOD = 1 3 S ΔBOC ,求点 D 的坐标.
完成下面的解题过程,并在括号内填上依据。如图,EF∥AD,∠1=∠2,∠BAC=85°.求∠AGD的度数.解: ∵EF∥AD,∴∠2=____( )又∵∠1=∠2 ∴∠1=∠3∴ ∥____( )∴∠BAC+____=180°∵∠BAC=85°∴∠AGD=950
(本题6分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移7格后的图形.(不要求写作图步骤和过程)
(每小题5分,共10分)(1)解方程组 (2)解不等式组并把不等式组的解集在数轴上表示出来
(本题10分)已知数轴上两点A、B对应的数分别是 6,-8,M、N、P为数轴上三个动点,点M从A点出发速度为每秒2个单位,点N从点B出发速度为M点的3倍,点P从原点出发速度为每秒1个单位.(1)若点M向右运动, 同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?
(本题8分)商店出售茶壶和茶杯,茶壶每把24元, 茶杯每只5元.有两种优惠方法:方法1.买一把茶壶送一只茶杯;方法2.按原价打9折付款.一位顾客买了5把茶壶和x只茶杯(x>5),(1)计算两种方式的付款数,(用含x的式子表示);(2)购买多少只茶杯时,两种方法的付款数相同?