如图,在平面直角坐标系中,点 的坐标是 ,点 的坐标是 ,点 、 在以 为直径的半圆 上,且四边形 是平行四边形,则点 的坐标为 .
等腰三角形 在平面直角坐标系中的位置如图所示,已知点 ,点 在原点, ,把等腰三角形 沿 轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置② 依此规律,第15次翻转后点 的横坐标是 .
如图,在平面直角坐标系中,点 , , , 和 , , , 分别在直线 和 轴上.△ ,△ ,△ , 都是等腰直角三角形.如果点 ,那么点 的纵坐标是 .
若从 ,1,2这三个数中,任取两个分别作为点 的横、纵坐标,则点 在第二象限的概率是 .
如图,在平面直角坐标系中,经过点 的双曲线 同时经过点 ,且点 在点 的左侧,点 的横坐标为 , ,则 的值为 .
如图,在平面直角坐标系中,直线 的函数表达式为 ,点 的坐标为 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ,以 为圆心, 为半径画圆,交直线 于点 ,交 轴正半轴于点 ; 按此做法进行下去,其中 的长为 .
如图,在平面直角坐标系中,以 为圆心,适当长为半径画弧,交 轴于点 ,交 轴于点 ,再分别以点 , 为圆心,大于 的长为半径画弧,两弧在第二象限内交于点 ,则 与 的数量关系是 .
定义:在平面直角坐标系 中,把从点 出发沿纵或横方向到达点 (至多拐一次弯)的路径长称为 , 的“实际距离”.如图,若 , ,则 , 的“实际距离”为5,即 或 .环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设 , , 三个小区的坐标分别为 , , ,若点 表示单车停放点,且满足 到 , , 的“实际距离”相等,则点 的坐标为 .
如图, 轴,垂足为 ,将 绕点 逆时针旋转到△ 的位置,使点 的对应点 落在直线 上,再将△ 绕点 逆时针旋转到△ 的位置,使点 的对应点 落在直线 上,依次进行下去 若点 的坐标是 ,则点 的纵坐标为 .
如图,在平面直角坐标系中,直线 与 轴交于点 ,以 为边长作等边三角形 ,过点 作 平行于 轴,交直线 于点 ,以 为边长作等边三角形 ,过点 作 平行于 轴,交直线 于点 ,以 为边长作等边三角形 , ,则点 的横坐标是 .
如图,四边形 为矩形,点 , 分别在 轴和 轴上,连接 ,点 的坐标为 , 的平分线与 轴相交于点 ,则点 的坐标为 .
如图,△ ,△ ,△ , ,△ 为正整数)均为等边三角形,它们的边长依次为2,4,6, , ,顶点 , , , , 均在 轴上,点 是所有等边三角形的中心,则点 的坐标为 .
如图,在平面直角坐标系中, 、 两点分别在 轴、 轴上, , ,连接 .点 在平面内,若以点 、 、 为顶点的三角形与 全等(点 与点 不重合),则点 的坐标为 .