初中数学

某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为 Q ,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的 Q 值都以平均值 n 计算.第一年有40家工厂用乙方案治理,共使 Q 值降低了12.经过三年治理,境内长江水质明显改善.

(1)求 n 的值;

(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数 m ,三年来用乙方案治理的工厂数量共190家,求 m 的值,并计算第二年用乙方案新治理的工厂数量;

(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的 Q 值比上一年都增加一个相同的数值 a .在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的 Q 值与当年用甲方案治理降低的 Q 值相等,第三年,用甲方案使 Q 值降低了39.5.求第一年用甲方案治理降低的 Q 值及 a 的值.

来源:2018年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

某市总预算 a 亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.

2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加 b 亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年年初开始逐年按同一百分数递减,依此规律,在2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到 3 : 2

(1)这三年用于辅助配套的投资将达到多少亿元?

(2)市政府2015年年初对三项工程的总投资是多少亿元?

(3)求搬迁安置投资逐年递减的百分数.

来源:2017年湖北省宜昌市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有 A B 两种型号的健身器材可供选择.

(1)劲松公司2015年每套 A 型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套 A 型健身器材年平均下降率 n

(2)2017年市政府经过招标,决定年内采购并安装劲松公司 A B 两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套 A 型健身器材售价为1.6万元,每套 B 型健身器材售价为 1 . 5 ( 1 - n ) 万元.

A 型健身器材最多可购买多少套?

②安装完成后,若每套 A 型和 B 型健身器材一年的养护费分别是购买价的 5 % 15 % ,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?

来源:2017年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.

(1)求该企业从2014年到2016年利润的年平均增长率;

(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?

来源:2017年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

某水果店在两周内,将标价为10元 / 斤的某种水果,经过两次降价后的价格为8.1元 / 斤,并且两次降价的百分率相同.

(1)求该种水果每次降价的百分率;

(2)从第一次降价的第1天算起,第 x 天( x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元 / 斤,设销售该水果第 x (天)的利润为 y (元),求 y x ( 1 x < 15 ) 之间的函数关系式,并求出第几天时销售利润最大?

时间 x (天)

1 x < 9

9 x < 15

x 15

售价(元 / 斤)

第1次降价后的价格

第2次降价后的价格

销量(斤)

80 - 3 x

120 - x

储存和损耗费用(元)

40 + 3 x

3 x 2 - 64 x + 400

(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?

来源:2017年湖北省随州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,有一块矩形硬纸板,长 30 cm ,宽 20 cm .在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为 200 c m 2

来源:2019年江苏省徐州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

某地计划对矩形广场进行扩建改造.如图,原广场长 50 m ,宽 40 m ,要求扩充后的矩形广场长与宽的比为 3 : 2 .扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?

来源:2019年江苏省南京市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.

(1)请问每个站点的造价和公共自行车的单价分别是多少万元?

(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.

来源:2016年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.

(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?

(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?

来源:2016年山东省济宁市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

空地上有一段长为 a 米的旧墙 MN ,某人利用旧墙和木栏围成一个矩形菜园 ABCD ,已知木栏总长为100米.

(1)已知 a = 20 ,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙 AD 的长;

(2)已知 0 < a < 50 ,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园 ABCD 的面积最大,并求面积的最大值.

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在足够大的空地上有一段长为 a 米的旧墙 MN ,某人利用旧墙和木栏围成一个矩形菜园 ABCD ,其中 AD MN ,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

(1)若 a = 20 ,所围成的矩形菜园的面积为450平方米,求所利用旧墙 AD 的长;

(2)求矩形菜园 ABCD 面积的最大值.

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元 / 盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元 / 盒.

(1)2014年这种礼盒的进价是多少元 / 盒?

(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?

来源:2017年江苏省盐城市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.

来源:2016年江苏省泰州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学一元二次方程的应用计算题