某蔬菜种植基地为提高蔬菜产量,计划对甲、乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.
(1)改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?
(2)已知改造1个甲种型号大棚的时间是5天,改造1个乙种型号大棚的时间是3天,该基地计划改造甲、乙两种蔬菜大棚共8个,改造资金最多能投入128万元,要求改造时间不超过35天,请问有几种改造方案?哪种方案基地投入资金最少,最少是多少?
有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.
(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?
(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.
为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由、两种彩页构成.已知种彩页制版费300元张,种彩页制版费200元张,共计2400元.(注彩页制版费与印数无关)
(1)每本宣传册、两种彩页各有多少张?
(2)据了解,种彩页印刷费2.5元张,种彩页印刷费1.5元张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?
在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.
(1)钢笔、笔记本的单价分别为多少元?
(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?
辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.
(1)求甲、乙两种客房每间现有定价分别是多少元?
(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润最大,最大利润是多少元?
某出租汽车公司计划购买型和型两种节能汽车,若购买型汽车4辆,型汽车7辆,共需310万元;若购买型汽车10辆,型汽车15辆,共需700万元.
(1)型和型汽车每辆的价格分别是多少万元?
(2)该公司计划购买型和型两种汽车共10辆,费用不超过285万元,且型汽车的数量少于型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.
为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只型节能灯和5只型节能灯共需50元,2只型节能灯和3只型节能灯共需31元.
(1)求1只型节能灯和1只型节能灯的售价各是多少元?
(2)学校准备购买这两种型号的节能灯共200只,要求型节能灯的数量不超过型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.
某旅行团32人在景区游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.
(1)求该旅行团中成人与少年分别是多少人?
(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区游玩.景区的门票价格为100元张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.
①若由成人8人和少年5人带队,则所需门票的总费用是多少元?
②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以.
(1)计算:,;
(2)若,都是“相异数”,其中,,,,都是正整数),规定:,当时,求的最大值.
对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以.
(1)计算:,;
(2)若,都是“相异数”,其中,,,,都是正整数),规定:,当时,求的最大值.
(列方程(组及不等式解应用题)
水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价基本水价污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数实际生活用水的立方数)
(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?
(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?
列方程(组解应用题
为了绿化校园环境,某学习小组共10人去校园空地参加植树活动,其中男生每人植树2棵,女生每人植树1棵,该小组一共植树16棵,问男生与女生各多少人?
学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个奖品和2个奖品共需120元;购买5个奖品和4个奖品共需210元.
(1)求,两种奖品的单价;
(2)学校准备购买,两种奖品共30个,且奖品的数量不少于奖品数量的.请设计出最省钱的购买方案,并说明理由.