对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.
(1)计算:F(243),F(617);
(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1⩽x⩽9,1⩽y⩽9,x,y都是正整数),规定:k=F(s)F(t),当F(s)+F(t)=18时,求k的最大值.
已知:如图,// ,求图形中的x的值.
某礼堂共有25排座位,第一排有20个座位,后面每一排都比前一排多1个座位,写出每排的座位数m与这排的排数n的函数关系式并写出自变量n的取值范围. 上题中,在其他条件不变的情况下,请探究下列问题: ①当后面每一排都比前一排多2个座位时,则每排的座位数m与这排的排数n的函数关系式是______________(1≤n≤25,且n是正整数) ②当后面每一排都比前一排多3个座位、4个座位时,则每排的座位数m与这排的排数n的函数关系式分别是___________,___________(1≤n≤25,且n是正整数) ③某礼堂共有P排座位,第一排有a个座位,后面每一排都比前一排多b个座位,试写出每排的座位数m与这排的排数n的函数关系式,并写出自变量n的取值范围.
如图,足球由正五边形皮块(黑色)和正六边形皮块(白色)缝成,试用正六边形的块数x表示正五边形的块数y,并指出其中的变量和常量.(提示:每一个白色皮块周围连着三个黑色皮块)
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C. (1)求抛物线的解析式; (2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形, 求点P的坐标; (3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形 为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.
弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有如下关系:
(1)请写出弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式. (2)当挂重10千克时弹簧的总长是多少?(3)画出此函数图像。