先化简,再求值: ( 1 x - y + 1 x + y ) ÷ 1 x 2 + xy .其中 x = 2 , y = 1 .
先化简,再求值:,其中.
(1)计算: | 5 - 3 | + 2 5 cos 60 ° - 1 2 × 8 - ( - 2 2 ) 0 .
(2)先化简,再求值: ( x + 2 + 3 x - 2 ) ÷ 1 + 2 x + x 2 x - 2 ,其中 x = 2 - 1 .
已知 y = 2 x ,且 x ≠ y ,求 ( 1 x - y + 1 x + y ) ÷ x 2 y x 2 - y 2 的值.
先化简,再求值: 2 a + 1 a + 1 + a 2 − 2 a a 2 − 1 ÷ ( 2 a − 1 a − 1 − a − 1 ) ,其中 a = − 3 2 .
阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:
立方和公式:
立方差公式:
根据材料和已学知识,先化简,再求值:,其中.
先化简,再求值: 1 + 1 x - 2 ÷ x 2 - 2 x + 1 x - 2 ,其中 x = 4 ﹣ tan 45 ° .
设 A = a − 2 1 + 2 a + a 2 ÷ ( a − 3 a a + 1 ) .
(1)化简 A ;
(2)当 a = 3 时,记此时 A 的值为 f (3);当 a = 4 时,记此时 A 的值为 f (4); …
解关于 x 的不等式: x − 2 2 − 7 − x 4 ⩽ f (3) + f (4) + … + f ( 11 ) ,并将解集在数轴上表示出来.
先化简,再求值: x 2 x - 3 + 9 3 - x ,其中 x = 1 .
先化简,再求值: ( x 2 - 4 x 2 + 4 x + 4 + x x + 2 ) ⋅ 1 x - 1 ,其中 x = 3 .
先化简: a 2 - 2 a + 1 a 2 - 1 ÷ ( a - 2 a a + 1 ) ,再从﹣1,0,1,2中选择一个适合的数代入求值.
先化简,再求值: 1 + m − n m − 2 n ÷ n 2 − m 2 m 2 − 4 mn + 4 n 2 ,其中 m , n 满足 m 3 = − n 2 .
先化简,再求值: x 2 + 2 x + 1 2 x - 6 ÷ 1 + 4 x - 3 ,其中 x = tan 45 ° .