(1)计算: | 5 - 3 | + 2 5 cos 60 ° - 1 2 × 8 - ( - 2 2 ) 0 .
(2)先化简,再求值: ( x + 2 + 3 x - 2 ) ÷ 1 + 2 x + x 2 x - 2 ,其中 x = 2 - 1 .
(1)4﹣3x=4x﹣3(2)3(x+1)﹣1=x﹣2(3)=1﹣(4)+=1(5)当x取何值时,代数式3(2﹣x)的值与2(3+2x)的值互为相反数.
如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,3秒后,两点相距15个单位长度.已知点B的速度是点A的速度的4倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动,几秒时,原点恰好处在点A、点B的正中间?(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
已知:如图,ON平分∠AOC,OM平分∠BOC,∠AOB=90°;(1)∠AOC=40°,求∠MON的大小;(2)当锐角∠AOC的度数发生改变时,∠MON的大小是否发生改变,并说明理由.
如图,点M是线段AB的中点,N在MB上,MN=AM,若AM=15cm.求线段NB的长.
如图,直线AB,CD相交于点O,∠AOC=60°,∠1:∠2=1:2.(1)求∠2的度数;(2)若∠2与∠MOE互余,求∠MOB的度数.