某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求这两种商品的进价.(2)该商店有几种进货方案?哪种进货方案可获得最大利润,最大利润是多少?
如图,∠AOB=90°,∠BOC=30°,则∠AOC=°.
如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角.若已知∠BOE=∠AOC,∠EOD=36°,求∠AOC的度数.
如图,AB与CD交于点O,OM为射线. (1)写出∠BOD的对顶角. (2)写出∠BOD与∠COM的邻补角. (3)已知∠AOC=70°,∠BOM=80°,求∠DOM和∠AOM的度数.
我们知道,两条直线相交,有且只有一个交点,三条直线相交,最多只有三个交点,那么,四条直线相交,最多有多少个交点?一般地,n条直线最多有多少个交点?说明理由.
如图所示,OD是∠BOC的平分线,OE是∠AOC的平分线,找出图中互补的角、互余的角.