一个不透明的袋子里装有编号分别为1、2、3的球(除编号以为,其余都相同),其中1号球1个,3号球3个,从中随机摸出一个球是2号球的概率为.(1)求袋子里2号球的个数.(2)甲、乙两人分别从袋中摸出一个球(不放回),甲摸出球的编号记为x,乙摸出球的编号记为y,用列表法求点A(x,y)在直线y=x下方的概率.
如图8,在△ABC中,D,E在直线BC上. (1)若AB=BC=AC=CE=BD,求∠EAC的度数; (2)若AB=AC=CE=BD,∠DAE=100°,求∠EAC的度数.
如图7,在边长为a的正方形纸片的四个角都剪去一个长为m、宽为n的矩形. (1)用含a,m,n的式子表示纸片剩余部分的面积; (2)当m=3,n=5,且剩余部分的面积等于229时,求正方形的边长a的值
先化简,再求值:,其中
如图6,AB⊥CB,DC⊥CB,E,F在BC上,AF=DE,BE="CF." 求证:∠A=∠D.
已知函数y="(k+1)x" + k-1. (1)若函数的图象经过原点,求k的值; (2)若函数的图象经过第一、三、四象限,求k的取值范围.