本题8分)便民超市原有桶食用油,上午卖出桶食用油,中午休息时又购进同样的食用油桶,下班清仓时发现该食用油只剩下5桶,请问:
(1)便民超市中午过后一共卖出多少桶食用油(用含的式子表示)?
(2)当时,便民超市这一天共卖出多少桶食用油?
轮船在静水中的速度为 km/h,水流速度为 km/h,轮船顺水航行4 h,逆水航行3 h,轮船一共行驶了多少km?(结果用含,的式子表示)
将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图),
(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;
(2)十字框框住的5个数之和能等于2020吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;
(3)十字框框住的5个数之和能等于365吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.(本题6分)
(1)写出一个含有字母x的代数式,当x =1时,代数式的值等于2;
(2)写出一个含有字母x的代数式,当x =4和x =时,代数式的值都等于5;
(3)写出两个只含有字母x的二次三项式,当x不论取什么值时,这两个多项式的和总是等于3(列式表示).
如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于 .
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积,
方法① .方法② .
(3)观察图②,你能写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系吗?
(4)根据(3)题中的等量关系,解决如下问题:若a+b=6,ab=4,则求(a-b)2的值.
在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数 “纯数”.
定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.
例如:32是“纯数”,因为在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为在列竖式计算时个位产生了进位.
(1)请直接写出1949到2019之间的“纯数”;
(2)求出不大于100的“纯数”的个数,并说明理由.
有一电脑程序:每按一次按键,屏幕的 区就会自动加上 ,同时 区就会自动减去 ,且均显示化简后的结果.已知 , 两区初始显示的分别是25和 ,如图.
如,第一次按键后, , 两区分别显示:
(1)从初始状态按2次后,分别求 , 两区显示的结果;
(2)从初始状态按4次后,计算 , 两区代数式的和,请判断这个和能为负数吗?说明理由.
课堂上李老师把要化简求值的整式(7a2﹣6a2b+3a2b)﹣(﹣3a2﹣6a2b+3a2b+10a2﹣3)写完后,让王红同学任意给出一组a、b的值,老师自己说答案,当王红说完:“a=38,b=﹣32”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?请你通过计算说出其中的道理.
有理数x、y在数轴上对应点如图所示:
(1)在数轴上表示、;
(2)试把x、y、0、、这五个数从小到大用“<”号连接;
(3)化简.