先化简,再求值: 2(3x2-y)-(2x2-y),其中x=-2,y=-3
(本题12分)阅读下列材料并解决有关问题:我们知道,现在我们可以用这一个结论来化简含有绝对值的代数式,如化简代数式时,可令和,分别求得(称分别为与的零点值).在有理数范围内,零点值和可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当时,原式=;
(2)当时,原式=;
(3)当时,原式=.
综上讨论,原式=
通过以上阅读,请你解决以下问题:(1)求出和的零点值;(2)化简代数式
(本题8分) 已知多项式与差的值与字母x的取值无关,求代数式的值.
化简(每题4分,共16分)
(1)2a+5a﹣6a
(2)x﹣(5x+2y)﹣(x﹣2y)
(3)a﹣2(2a+b)+3(a﹣b)
(4)先化简,再求值:2ab+3a2b﹣2(a2b﹣ab),其中a=﹣1,b=﹣2.
在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数 “纯数”.
定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.
例如:32是“纯数”,因为在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为在列竖式计算时个位产生了进位.
(1)请直接写出1949到2019之间的“纯数”;
(2)求出不大于100的“纯数”的个数,并说明理由.
有一电脑程序:每按一次按键,屏幕的 区就会自动加上 ,同时 区就会自动减去 ,且均显示化简后的结果.已知 , 两区初始显示的分别是25和 ,如图.
如,第一次按键后, , 两区分别显示:
(1)从初始状态按2次后,分别求 , 两区显示的结果;
(2)从初始状态按4次后,计算 , 两区代数式的和,请判断这个和能为负数吗?说明理由.
课堂上李老师把要化简求值的整式(7a2﹣6a2b+3a2b)﹣(﹣3a2﹣6a2b+3a2b+10a2﹣3)写完后,让王红同学任意给出一组a、b的值,老师自己说答案,当王红说完:“a=38,b=﹣32”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?请你通过计算说出其中的道理.
有理数x、y在数轴上对应点如图所示:
(1)在数轴上表示、;
(2)试把x、y、0、、这五个数从小到大用“<”号连接;
(3)化简.