先化简,再求值 3x2y﹣[2xy﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.
沿图1长方形中的虚线平均分成四块小长方形,然后按图2的形状拼成一个正方形.
(1)图2中的阴影部分的面积为
(2)观察图2请你写出代数式(m+n)2、(m﹣n)2、mn之间的等量关系式 .
(3)根据你得到的关系式解答下列问题:若x+y=﹣6,xy=5,则x﹣y= .
发现 任意五个连续整数的平方和是5的倍数.
验证 (1)的结果是5的几倍?
(2)设五个连续整数的中间一个为,写出它们的平方和,并说明是5的倍数.
延伸 任意三个连续整数的平方和被3除的余数是几呢?请写出理由.
先化简,再求值:
(1)若|a+1|+(b﹣2)2=0,求5(3a2b﹣ab2﹣4(﹣ab2+3a2b)的值;
(2)已知多项式A与多项式(﹣2x2+3)的差是2x2+2x﹣7.
①求多项式A;
②x=﹣1时,求A的值.
(1)先化简,再求值: ,其中 .
(2)计算: ,其中 、 满足 .
嘉淇准备完成题目:发现系数“”印刷不清楚.
(1)他把“”猜成3,请你化简:;
(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?
《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数 “纯数”.
定义;对于自然数,在计算时,各数位都不产生进位,则称这个自然数为“纯数”,
例如:32是”纯数”,因为计算时,各数位都不产生进位;
23不是“纯数”,因为计算时,个位产生了进位.
(1)判断2019和2020是否是“纯数”?请说明理由;
(2)求出不大于100的“纯数”的个数.
在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数 “纯数”.
定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.
例如:32是“纯数”,因为在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为在列竖式计算时个位产生了进位.
(1)请直接写出1949到2019之间的“纯数”;
(2)求出不大于100的“纯数”的个数,并说明理由.
先化简,再求值:﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=,b=10.
有一电脑程序:每按一次按键,屏幕的 区就会自动加上 ,同时 区就会自动减去 ,且均显示化简后的结果.已知 , 两区初始显示的分别是25和 ,如图.
如,第一次按键后, , 两区分别显示:
(1)从初始状态按2次后,分别求 , 两区显示的结果;
(2)从初始状态按4次后,计算 , 两区代数式的和,请判断这个和能为负数吗?说明理由.
课堂上李老师把要化简求值的整式(7a2﹣6a2b+3a2b)﹣(﹣3a2﹣6a2b+3a2b+10a2﹣3)写完后,让王红同学任意给出一组a、b的值,老师自己说答案,当王红说完:“a=38,b=﹣32”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?请你通过计算说出其中的道理.