高中数学

f x 是定义在R上且周期为1的函数,在区间[0,1)上, f x = x 2 x D x x D ,其中集合 D = { x | x = n - 1 n n N * } ,则方程 f x )﹣ lgx = 0 的解的个数是________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x 2+y 2=50上.若 PA PB 20 ,则点P的横坐标的取值范围是________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

如图,在同一个平面内,向量 OA OB OC 的模分别为1,1, 2 OA OC 的夹角为 α ,且 tanα = 7 OB OC 的夹角为 45 ° .若 OC = m OA + n OB m n R ,则 m + n = ________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2022-08-02
  • 题型:未知
  • 难度:未知

已知函数 f x = x 3 2 x + e x 1 e x ,其中e是自然对数的底数.若 f a 1 + f 2 a 2 0 .则实数a的取值范围是________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

等比数列 { a n } 的各项均为实数,其前n项为S n, 已知 S 3 = 7 4 S 6 = 63 4 ,则 a 8 = ________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,双曲线 x 2 3 y 2 = 1 的右准线与它的两条渐近线分别交于点P,Q,其焦点是 F 1 F 2 , 则四边形 F 1 P F 2 Q 的面积是________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

记函数 f x = 6 + x - x 2 定义域为D.在区间 [ 4 5 ] 上随机取一个数x,则 x D 的概率是________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

如图,在圆柱 O   1 O   2 内有一个球 O ,该球与圆柱的上、下底面及母线均相切,记圆柱 O   1 O   2 的体积为 V   1 , 球 O 的体积为 V   2 , 则 V 1 V 2 的值是________.

image.png

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2022-08-02
  • 题型:未知
  • 难度:未知

tan α π 4 = 1 6 .则 tanα = ________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

如图是一个算法流程图:若输入x的值为 1 16 ,则输出y的值是________.

image.png

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2022-08-02
  • 题型:未知
  • 难度:未知

某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

已知复数 z = 1 + i )( 1 + 2 i ,其中 i 是虚数单位,则z的模是________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

已知集合A={1,2},B={a,a 2+3}.若A∩B={1},则实数a的值为________.

来源:2017年全国统一高考数学试卷(江苏卷)
  • 更新:2021-09-28
  • 题型:未知
  • 难度:未知

如图,圆形纸片的圆心为 O ,半径为 5 c m ,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点, DBC ECA FAB 分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起 DBC ECA FAB ,使得D、E、F重合,得到三棱锥。当 ABC 的边长变化时,所得三棱锥体积(单位: c m   3 )的最大值为_________.

来源:2017年全国统一高考理科数学试卷(全国Ⅰ卷)
  • 更新:2022-08-02
  • 题型:未知
  • 难度:未知

高中数学填空题