(本小题满分12分)
甲、乙、丙三人玩游戏,规定每次在写有数字1,2,3,4,5,6的6张卡片中随机抽取一张,若数字为1或2或3,则甲得1分;若数字为4或5,则乙得1分;若数字为6,则丙得1分.一共抽取3次,得2分或3分者获胜.
(Ⅰ)求乙获胜的概率;
(Ⅱ)记为甲得的分数,求随机变量
的概率分布列和数学期望.
已知函数的导函数
的图象上的一个最高点和与它相邻的一个最低点的坐标分别为
,
.
(Ⅰ)求函数的解析式;
(Ⅱ)将函数的图象向右平移
个单位得到函数
图象,直线
(
)与
,
的图象分别交于
两点,求
的最大值.
(本小题满分14分)(注意:在试题卷上作答无效)设数列的前
项和为
,对一切
,点
都在函数
的图象上.(Ⅰ)求
及数列
的通项公式
; (Ⅱ)将数列
依次按1项、2项、3项、4项循环地分为(
),(
,
),(
,
,
),(
,
,
,
);(
),(
,
),(
,
,
),(
,
,
,
);(
),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为
,求
的值;
(Ⅲ)令(
),求证:
.
(本小题满分13分)(注意:在试题卷上作答无效)已知椭圆和圆
:
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率
;
(ⅱ)若椭圆上存在点,使得
,求椭圆离心率
的取值范围;
(Ⅱ)设直线与
轴、
轴分别交于点
,
,求证:
为定值.
(本小题满分12分)(注意:在试题卷上作答无效)为赢得2010年上海世博会的制高点,某公司最近进行了世博特许产品的市场分析,调查显示,该产品每件成本9元,售价为30元,每天能卖出432件,该公司可以根据情况可变化价格(
)元出售产品;若降低价格,则销售量增加,且每天多卖出的产品件数与商品单价的降低值
的平方成正比,已知商品单价降低2元时,每天多卖出24件;若提高价格,则销售减少,减少的件数与提高价格
成正比,每提价1元则每天少卖8件,且仅在提价
销售时每件产品被世博管委会加收1元的管理费.
(Ⅰ)试将每天的销售利润表示为价格变化值
的函数;
(Ⅱ)试问如何定价才能使产品销售利润最大?
(本小题满分12分)(注意:在试题卷上作答无效)
如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,,E为DB的中点.
(Ⅰ)证明:AE⊥BC; (Ⅱ)若点
是线段
上的动点,设平面
与平面
所成的平面角大小为
,当
在
内取值时,求直线PF与平面DBC所成的角的范围.
(本小题满分12分)(注意:在试题卷上作答无效)
设定义在R上的函数,当时,f (x)取得极大值,并且函数
的图象关于y轴对称.(Ⅰ)求
的表达式;(Ⅱ)若曲线
对应的解析式为
,求曲线过点
的切线方程.
(本小题满分12分)(注意:在试题卷上作答无效)
在△中,角
、
、
所对的边分别为
、
、
,且
.
(Ⅰ)若,求角
;
(Ⅱ)设,
,试求
的取值范围.
(本小题满分13分)
已知函数.
(1)若实数,求函数
在
上的极值;
(2)记函数,设函数
的图象C与
轴交于
点,曲线C在
点处的切线与两坐标轴所围成的图形的面积为
,求当
时
的最小值。
(本题满分 13分)
集合为集合
的
个不同的子集,对于任意不大于
的正整数
满足下列条件:
①,且每一个
至
少含有三个元素;
②的充要条件是
(其中
)。
为了表示这些子集,作行
列的数表(即
数表),规定第
行第
列数为:
。
(1)该表中每一列至少有多少个1;若集合,请完成下面
数表(填符合题意的一种即可);
(2)用含的代数式表示
数表
中1的个数
,并证明
;
(3)设数列前
项和为
,数列
的通项公式为:
,证明不等式:
对任何正整数
都成立。
(本题13分)已知抛物线的焦点在
轴上,抛物线上一点
到准线的距离是
,过点
的直线与抛物线交于
,
两点,过
,
两点分别作抛物线的切线,这两条切线的交点为
.
(1)求抛物线的标准方程;
(2)求的值;
(3)求证:是
和
的等比中项.
(本小题满分12分)如图,多面体ABCDS中,面ABCD为矩形,
,
(1)求证:CD;
(2)求AD与SB所成角的余弦值;
(3)求二面角A—SB—D的余弦值.