(本小题满分14分)(注意:在试题卷上作答无效)设数列的前项和为,对一切,点都在函数 的图象上.(Ⅰ)求及数列的通项公式; (Ⅱ)将数列依次按1项、2项、3项、4项循环地分为(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;(Ⅲ)令(),求证:.
如图所示,椭圆C: 的两个焦点为、,短轴两个端点为 、.已知、、 成等比数列,,与 轴不垂直的直线 与 C 交于不同的两点、,记直线、的斜率分别为、,且. (Ⅰ)求椭圆 的方程; (Ⅱ)求证直线 与 轴相交于定点,并求出定点坐标; (Ⅲ)当弦 的中点落在四边形 内(包括边界)时,求直线 的斜率的取值范围.
已知数列{}中,,且对任意正整数都成立,数列{}的前n项和为 (1)若,且,求a; (2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由; (3)若.
(原创)已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立.(1)函数是否属于集合?说明理由;(2)设函数,求的取值范围;(3)设函数图象与函数的图象有交点,证明:函数.
(本小题满分15分)如图所示,正方形与直角梯形所在平面互相垂直,,,.(1)求证:平面;(2)求证:平面;(3)求四面体的体积.
(本小题满分14分)在中,角的对边分别为,已知.(Ⅰ)求角的大小;(Ⅱ)若,求△的面积.