已知数列{}中,,且对任意正整数都成立,数列{}的前n项和为 (1)若,且,求a; (2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由; (3)若.
已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+﹣b=0. (Ⅰ)求A; (Ⅱ)若△ABC的面积为,求bsinB+csinC的最小值.
在等差数列{an}和等比数列{bn}中,a1=1,b1=2,bn>0(n∈N*),且b1,a2,b2成等差数列,a2,b2,a3+2成等比数列,数列{bn}的前n项和为Sn. (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)若Sn+an>m对任意的正整数n恒成立,求常数m的取值范围.
已知数列中,其中为数列的前项和,并且(,. (1)设(),求证:数列是等比数列; (2)设数列(),求证:数列是等差数列; (3)求数列的通项公式和前项.
如图,已知圆内接四边形,切圆于点,且与四边形对角线延长线交于点,切圆O于点,且与延长线交于点,延长交于点,若. (1)求证:; (2)求证:四点共圆.
如图,和都经过两点,是的切线,交于点,是的切线,交于点,求证:.