若(本题12分)在△ABC中,,, 分别为内角A, B, C的对边,且(Ⅰ)求A的大小; (Ⅱ)求的最大值.
某海边旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得). (Ⅰ)求函数的解析式及其定义域; (Ⅱ)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
阅读下面材料: 根据两角和与差的正弦公式,有------①------② 由①+② 得------③ 令有 代入③得 . (Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:; (Ⅱ)若的三个内角满足,试判断的形状.
函数 (Ⅰ)判断并证明函数的奇偶性; (Ⅱ)若,证明函数在上单调递增; (Ⅲ)在满足(Ⅱ)的条件下,解不等式.
已知函数 (Ⅰ)求函数的最小正周期及单调递增区间; (Ⅱ)在中,若,,,求的值.
设全集,已知集合,集合,. (Ⅰ)求,; (Ⅱ)记集合,集合,若,求实数的取值范围.