(本题14分)某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?
设数列的前项和为,已知. (1)求证:数列是等比数列; (2)设,数列的前项和为,求证:.
在直角坐标系中,已知点,点在中三边围成的区域(含边界)上,且. (1)若,求; (2)用表示并求的最大值.
设函数,p为常数,. (1)若对任意的,恒有,求p的取值范围; (2)对任意的,函数恒成立,求实数a的取值范围.
如图,直角三角形ABC中,,,,点M,N分别在边AB和AC上(M点和B点不重合),将沿MN翻折,变为,使顶点落在边BC上(点和B点不重合),设. (1)用表示线段AM的长度,并写出的取值范围; (2)求线段长度的最小值.
设函数(是自然对数的底数). (1)的单调区间、最大值; (2)讨论关于x的方程根的个数.