(本小题满分12分)已知=-,Î(0,e],其中是自然常数, (Ⅰ)当时, 求的单调区间和极值; (Ⅱ)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
如图所示,圆的直径,为圆周上一点,.过作圆的切线,过作的垂线,分别与直线、圆交于点,求∠DAC和线段的长
某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12中,有9人认为作业多,3人认为作业不多;在不喜欢玩电脑游戏的10人中,有4人认为作业多,6人认为作业不多. (1)根据以上数据建立一个列联表; (2)试问喜欢电脑游戏与认为作业多少是否有关系? (可能用到的公式:,,可能用到数据:,,,.)
(本小题满分14分) 已知函数为自然对数的底数) (1)求的单调区间,若有最值,请求出最值; (2)是否存在正常数,使的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出的值,以及公共点坐标和公切线方程;若不存在,请说明理由.
(本小题满分14分) 已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线 (1) 求椭圆C的标准方程; (2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若求的值.
(本小题满分14分) 已知数列的首项,,…. (1)证明:数列是等比数列; (2)求数列的前项和.