(本小题满分12分)已知=-,Î(0,e],其中是自然常数, (Ⅰ)当时, 求的单调区间和极值; (Ⅱ)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
是空间不重合的平面,且,且是不重合的直线,求证:交于一点或∥∥.
在△ABC中,A,B,C所对的边分别是 (1)用余弦定理证明:当C为钝角时,; (2)当钝角△ABC的三边是三个连续整数时,求△ABC外接圆的半径.
如图,已知与圆相切于点,经过点的割线交圆于点、,∠APC的平分线分别交、于点、. (1)证明:∠ADE=∠AED; (2)若AC=AP,求的值.
正方体中,连接. (1)求证:∥平面; (2)求证:平面∥平面; (3)设正方体的棱长为,求四面体的体积.
如图,四棱锥中,四边形是正方形,若分别是线段的中点. (1)求证:||底面; (2)若点为线段的中点,平面与平面有怎样的位置关系?并证明。