(本小题满分13分)(注意:在试题卷上作答无效)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为.(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率;(ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;(Ⅱ)设直线与轴、轴分别交于点,,求证:为定值.
在中,满足:,是的中点.(1)若,求向量与向量的夹角的余弦值;(2)若点是边上一点,,且,求的最小值.
如图,在直角坐标系xOy中,锐角△ABC内接于圆已知BC平行于x轴,AB所在直线方程为,记角A,B,C所对的边分别是a,b,c.(1)若的值;(2)若的值.
已知向量(), ,且的周期为.(1)求f()的值;(2)写出f(x)在上的单调递增区间.
设函数其中,曲线在点处的切线方程为.(I)确定的值;(II)设曲线在点处的切线都过点(0,2).证明:当时,;(III)若过点(0,2)可作曲线的三条不同切线,求的取值范围.
设不等式组所表示的平面区域为Dn,记Dn内 的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).(1) 求证:数列{an}的通项公式是an=3n(n∈N*).(2) 记数列{an}的前n项和为Sn,且Tn=.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.