(满分14分)设命题P:关于x的不等式 (a>0且a≠1)的解集为{x|-a<x<2a};命题Q:y=lg(ax2-x+a)的定义域为R,如果P或Q为真,P且Q为假,求a的取值范围
已知圆A:x2+y2-2x-2y-2=0. (1)若直线l:ax+by-4=0平分圆A的周长,求原点O到直线l的距离的最大值; (2)若圆B平分圆A的周长,圆心B在直线y=2x上,求符合条件且半径最小的圆B的方程.
已知圆C:x2+(y-2)2=5,直线l:mx-y+1=0. (1)求证:对m∈R,直线l与圆C总有两个不同交点; (2)若圆C与直线l相交于A,B两点,求弦AB的中点M的轨迹方程.
已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点. (1)求圆C的方程; (2)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4,半径小于5. (1)求直线PQ与圆C的方程; (2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.
已知直线l:2x+y+2=0及圆C:x2+y2=2y. (1)求垂直于直线l且与圆C相切的直线l′的方程; (2)过直线l上的动点P作圆C的一条切线,设切点为T,求|PT|的最小值.