泉州市组织群众性登清源山健身活动,招募了名师生志愿者,现将所有志愿者按年龄情况分为等六组,其频率分布直方图如下图所示: 已知之间的志愿者共人.
(1)求和之间的志愿者人数;
(2)已知和之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?
(3)组织者从之间的志愿者(其中共有名女教师,其余全为男教师)中随机选取名担任后勤保障工作,其中女教师的人数为,求的分布列和数学期望.
在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底 面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)求四棱锥P-ABCD的体积。
一个长、宽、高分别为a、b、c长方体的体积是8cm2,它的全面积是32 cm2, 且满足 b2=ac,求这个长方体所有棱长之和。
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米。
(1)分别用x表示y和S的函数关系式,并给出定义域;
(2)怎样设计能使S取得最大值,并求出最大值。
已知二次函数的二次项系数为,且不等式的解集为.
(1)若方程有两个相等的实数根, 求的解析式;
(2)若的最大值为正数,求的取值范围.
已知命题p:,命题q:. 若“p且q”为真命题,求实数m的取值范围.
如图用n种不同颜色,给图中A、B、C、D、四块区域涂色,允许同一种颜色
涂不同区域,但相邻区域不能涂同一种颜色⑴n=3,共有多少种不同的涂法?
⑵n=5,共有多少种不同的涂法?
设函数。
(Ⅰ)求的极大值点与极小值点;
(Ⅱ)求在区间上的最大值与最小值。
在平面内,如果用一条直线去截正方形的一个角,那么截下的一个直角三角形按图所标边长,由勾股定理有。设想正方形换成正方体,把截线换成如图所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥,如果用,,表示三个侧面面积,表示截面面积,那么你类比得到的结论是 。
设,集合,.
(Ⅰ)当a=3时,求集合;
(Ⅱ)若,求实数的取值范围.