泉州市组织群众性登清源山健身活动,招募了名师生志愿者,现将所有志愿者按年龄情况分为等六组,其频率分布直方图如下图所示: 已知之间的志愿者共人.(1)求和之间的志愿者人数;(2)已知和之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?(3)组织者从之间的志愿者(其中共有名女教师,其余全为男教师)中随机选取名担任后勤保障工作,其中女教师的人数为,求的分布列和数学期望.
同时抛掷两颗骰子,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5小于10的概率;(3)点数之和大于3的概率.
已知圆C的方程为,点A,直线:(1)求与圆C相切,且与直线垂直的直线方程;(2)O为坐标原点,在直线OA上是否存在异于A点的B点,使得为常数,若存在,求出点B,不存在说明理由.
已知圆C1:与圆C2:相交于A、B两点,(1)求公共弦AB所在的直线方程;(2)求圆心在直线上,且经过A、B两点的圆的方程.
已知圆 C方程为.(1)若圆C与直线相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(2)在(1)的条件下,求以MN为直径的圆的方程.
已知圆C与圆相外切,并且与直线相切于点,求圆C的