泉州市组织群众性登清源山健身活动,招募了名师生志愿者,现将所有志愿者按年龄情况分为等六组,其频率分布直方图如下图所示: 已知之间的志愿者共人.(1)求和之间的志愿者人数;(2)已知和之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?(3)组织者从之间的志愿者(其中共有名女教师,其余全为男教师)中随机选取名担任后勤保障工作,其中女教师的人数为,求的分布列和数学期望.
已知A、B是椭圆与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OPAB的面积最大.
已知为复数,为纯虚数,,且,求.
(本小题满分12分)已知,其中是自然常数, (1)讨论时, 的单调性、极值; (2)求证:在(1)的条件下,; (3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
(本小题满分12分)如图,点A,B分别是椭圆的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为:且. (1)求直线AP的方程; (2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于,求椭圆上的点到点M的距离d的最小值.
(本小题满分12分)已知A,B两点是椭圆与坐标轴正半轴的两个交点. (1)设为参数,求椭圆的参数方程; (2)在第一象限的椭圆弧上求一点P,使四边形OAPB的面积最大,并求此最大值.