泉州市组织群众性登清源山健身活动,招募了名师生志愿者,现将所有志愿者按年龄情况分为等六组,其频率分布直方图如下图所示: 已知之间的志愿者共人.(1)求和之间的志愿者人数;(2)已知和之间各有名数学教师,现从这两个组中各选取人担任接待工作,设两组的选择互不影响,求两组选出的人中都至少有名数学教师的概率?(3)组织者从之间的志愿者(其中共有名女教师,其余全为男教师)中随机选取名担任后勤保障工作,其中女教师的人数为,求的分布列和数学期望.
(本小题满分13分)在数列。(1)求证:数列是等差数列,并求数列的通项公式;(2)设
(本小题满分12分)在如图所示的空间几何体中,△ABC,△ACD都是等边三角形,AE=CE,DE//平面ABC,平面ACD⊥平面ABC。(1)求证:DE⊥平面ACD;(2)若AB=BE=2,求多面体ABCDE的体积。
(本小题满分12分)某学校为了了解学生的日平均睡眠时间(单位:h),随机选择了n名学生进行调查,下表是这n名学生的日睡眠时间的频率分布表。
(1)求n的值.若,将表中数据补全,并画出频率分布直方图.(2)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是5)作为代表.若据此计算的上述数据的平均值为7.2,求的值,并由此估计该学校学生的日平均睡眠时间在7.5小时以上的概率.
(本小题满分12分)在,角A,B,C的对边分别为。(1)判断的形状;(2)若的值。
(本小题14分)已知函数在处取得极值。(Ⅰ)求函数的解析式;(Ⅱ)求证:对于区间上任意两个自变量的值,都有;(Ⅲ)若过点可作曲线的三条切线,求实数的取值范围。