已知直线L的参数方程{,(t为参数)圆C的极坐标方程是试判断直线L与圆C的位置关系.
如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,.(1)若,求的值;(2)设函数,求的值域.
在等比数列{}中,,公比,且, 与的等比中项为2.(1)求数列{}的通项公式;(2)设 ,求:数列{}的前项和为,
设函数,.(1)当时,函数取得极值,求的值;(2)当时,求函数在区间[1,2]上的最大值;(3)当时,关于的方程有唯一实数解,求实数的值.
已知圆,若焦点在轴上的椭圆 过点,且其长轴长等于圆的直径.(1)求椭圆的方程;(2)过点作两条互相垂直的直线与,与圆交于、两点,交椭圆于另一点,设直线的斜率为,求弦长;(3)求面积的最大值.
某商场从生产厂家以每件20元购进一批商品,若该商品零售价定为元,则销售量(单位:件)与零售价(单位:元)有如下关系:,问该商品零售价定为多少元时毛利润最大,并求出最大毛利润.(毛利润销售收入进货支出)