围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x米,总费用为y(单位:元).(1)将y表示为x的函数; (2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
设函数f(x)=a为常数且a∈(0,1). (1)当a=时,求f; (2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2; (3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[,]上的最大值和最小值.
设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>0}. (1)求I的长度(注:区间(α,β)的长度定义为β-α); (2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I的长度的最小值.
如图所示,在多面体ABCDEFG中,平面ABC∥平面DEFG,AD⊥平面DEFG,BA⊥AC,ED⊥DG,EF∥DG,且AC=1,AB=ED=EF=2,AD=DG=4. (1)求证:BE⊥平面DEFG; (2)求证:BF∥平面ACGD; (3)求二面角F-BC-A的余弦值.
)如图所示,在三棱锥P-ABC中,AB=BC=,平面PAC⊥平面ABC,PD⊥AC于点D,AD=1,CD=3,PD=. (1)证明:△PBC为直角三角形; (2)求直线AP与平面PBC所成角的正弦值.
如图所示,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点. (1)求证:BE∥平面PAD; (2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.