(本小题满分12分)已知:等差数列{}中,=14,前10项和.(1)求;(2)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.
(本小题满分12分)如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,. (Ⅰ)若,求的值;(Ⅱ)设函数,求的值域.
(本大题满分14分)已知数列和满足:,,,其中为实数,为正整数.(Ⅰ)对任意实数,证明:数列不是等比数列;(Ⅱ)证明:当时,数列是等比数列;(Ⅲ)设(为实常数), 为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
(本大题满分13分)已知数列,设,数列. (1)求证:是等差数列; (2)求数列的前n项和Sn;(3)若一切正整数n恒成立,求实数m的取值范围.
(本大题满分13分)如图,现有一块半径为2m,圆心角为的扇形铁皮,欲从其中裁剪出一块内接五边形,使点在弧上,点分别在半径和上,四边形是矩形,点在弧上,点在线段上,四边形是直角梯形.现有如下裁剪方案:先使矩形的面积达到最大,在此前提下,再使直角梯形的面积也达到最大.(Ⅰ)设,当矩形的面积最大时,求的值;(Ⅱ)求按这种裁剪方法的原材料利用率.
本大题满分13分) 已知函数,过该函数图象上点(Ⅰ)证明:图象上的点总在图象的上方; (Ⅱ)若上恒成立,求实数的取值范围.