已知函数在时取得极值.(1)求的解析式;(2)求在区间上的最大值.
(本小题满分10分)在中,(Ⅰ)求的值 ; (Ⅱ)求的值。
已知函数.(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.
在平面直角坐标系中,点与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
已知抛物线:的焦点为,、是抛物线上异于坐标原点的不同两点,抛物线在点、处的切线分别为、,且,与相交于点. (1) 求点的纵坐标; (2) 证明:、、三点共线;
如图, 是边长为的正方形,平面,,,与平面所成角为. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)线段上是否存在点,使得平面?若存在,试确定点的位置;若不存在,说明理由。