[本小题满分12分] 为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5. (1) 求第四小组的频率和参加这次测试的学生人数; (2) 在这次测试中,学生跳绳次数的中位数落在第几小组内? (3) 参加这次测试跳绳次数在100次以上为优秀,估计该校此年级跳绳成绩优秀率是多少?
已知函数f(x)=x2+(x≠0,常数a∈R). (1)判断f(x)的奇偶性,并说明理由; (2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程=bx+a,其中b=-20,a=; (2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}. (1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件; (2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
(本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(>0),过点的直线的参数方程为(t为参数),直线与曲线C相交于A,B两点. (Ⅰ)写出曲线C的直角坐标方程和直线的普通方程; (Ⅱ)若,求的值.
(本小题满分12分)已知函数 (Ⅰ)设=-1,求函数的极值; (Ⅱ)在(Ⅰ)的条件下,若函数(其中为的导数)在区间(1,3)上不是单调函数,求实数的取值范围.