(1)焦点在轴上的椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程;
(2)已知双曲线的一条渐近线方程是,并经过点,求此双曲线的标准方程.
某组织对男女青年是否喜爱古典音乐进行了一个调查,调查者随机调查了名青年,下表给出了调查结
果(单位:人)
(1)用分层抽样的方法在不喜爱古典音乐的青年中抽人,其中男青年应抽几人?
(2)男女青年喜爱古典音乐的程度是否有差异?
如图1,平面四边形关于直线对称,,把沿折起(如图2),使二面角为直二面角.
(Ⅰ)求与平面所成的角的余弦值;
(Ⅱ)求二面角的大小的正弦值.
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:
年份(x) |
1 |
2 |
3 |
4 |
5 |
人数(y) |
3 |
5 |
8 |
11 |
13 |
(1)从这5年中随机抽取两年,求考入大学的人数至少有年多于10人的概率;
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值.
参考:用最小二乘法求线性回归方程系数公式
某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润与投资量成正比,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2,(注:利润与投资量单位:万元)
(1)分别将A,B两产品的利润表示为投资量的函数关系式;
(2)该公司已有10万元资金,并全部投入A,B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?