(本题满分12分)已知函数在定义域上是奇函数,又是减函数。
(Ⅰ)证明:对任意的,有
(Ⅱ)解不等式。
(本小题9分)等差数列{an}不是常数列,a5=10,且a5,a7,a10是某一等比数列{bn}的第1,2,3项,(1)求数列{an}的第20项,(2)求数列{bn}的通项公式。
(本小题满分14分) 如果对于函数的定义域内的任意成立,那么就称函数是定义域上的“平缓函数”.
(1)判断函数,是否是 “平缓函数”?
(2)若函数是闭区间上的“平缓函数”,且.证明:对任意的都有.
(本小题满分12分)所对的边分别为,且.
(Ⅰ)求角A;
(Ⅱ)已知求的值.
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求实数m的值
(Ⅱ)若ACRB,求实数m的取值范围
如图,一辆汽车从O点出发,沿海岸一条直线公路以100千米/时的速度向东匀速行驶,汽车开动时,在O点南偏东方向距O点500千米且与海岸距离MQ为300千米的海上M处有一快艇,与汽车同时出发,要把一件重要的物品递送给这辆汽车的司机,问快艇至少须以多大的速度行驶,才能把物品递送到司机手中,并求快艇以最小速度行驶时的方向与OM所成的角.
已知函数
(1)求函数的定义域;
(2)求证:函数是增函数;
(3)求函数的最小值.
(本小题满分14分)已知椭圆的中心在坐标原点,焦点在轴上,长轴长为,离心率为,经过其左焦点的直线交椭圆于、两点(I)求椭圆的方程;
(II)在轴上是否存在一点,使得恒为常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.