(本小题满分14分) 如果对于函数的定义域内的任意成立,那么就称函数是定义域上的“平缓函数”.(1)判断函数,是否是 “平缓函数”?(2)若函数是闭区间上的“平缓函数”,且.证明:对任意的都有.
)已知函数().(1)当时,求函数的极值;(2)讨论函数的单调性;(3)设,若对恒成立,求实数的取值范围.
直三棱柱中,,,、分别为、的中点.(1)求证:;(2)求异面直线与所成角的余弦值.
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(Ⅰ)求证:平面平面;(Ⅱ)若二面角为,设,试确定的值.
设函数.(1)若函数在时取得极小值,求的值;(2)若函数在定义域上是单调函数,求的取值范围.
某商厦欲在春节期间对某新上市商品开展促销活动,经测算该商品的销售量万件与促销费用万元满足.已知万件该商品的进价成本为万元,商品的销售价格定为元/件.(1)将该商品的利润万元表示为促销费用万元的函数;(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?