高中数学

(本大题13分)已知函数为常数)
(1)若在区间上单调递减,求的取值范围;
(2)若与直线相切:
(ⅰ)求的值;
(ⅱ)设处取得极值,记点M (,),N(,),P(), , 若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定的最小值,并证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题12分)
已知函数
(1)判断函数上的单调性;
(2)是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数.
(Ⅰ)若,求曲线处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得 ,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)当时,求函数的图象在点处的切线方程;
(Ⅱ)讨论函数的单调性;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数(1)若函数处与直线相切;
(1) ①求实数的值;      ②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数的图象过点P(0,2),且在点M处的切线方程为.
(Ⅰ)求函数的解析式;(Ⅱ)求函数的单调区间.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)若的图象在点处的切线方程为,求在区间上的最大值;
(2)当时,若在区间上不单调,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,其中,a、b为常数,已知曲线在点(2,0)处有相同的切线
(1)求a、b的值,并写出切线的方程;
(2)求函数单调区间与极值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数图象上一点
的切线方程为y= -3x+2ln2+2.
(1)求a,b的值;
(2)若方程内有两个不等实根,求m的取值范围(其
为自然对数的底数);

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)设函数(其中是自然对数的底数)
(I)若处的切线方程;
(II)若函数上有两个极值点.
①实数m的范围;    ②证明的极小值大于e.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数有两个极值点,且直线与曲线相切于点.
(1) 求
(2) 求函数的解析式;
(3) 在为整数时,求过点和相切于一异于点的直线方程

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数 ,其中R.
(1)若曲线在点处的切线方程为,求函数的解析
式;
(2)当时,讨论函数的单调性.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(Ⅰ)求曲线y=f(x)在(1,11)处的切线方程;(Ⅱ)求函数的单调区间
(Ⅲ)求函数在[-2,2]上的最值。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求
的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

、已知二次函数满足:①在x=1时有极值;②图像过点,且在该点处的切线与直线平行.
(1)求的解析式;          
(2)求函数的值域;
(3)若曲线上任意两点的连线的斜率恒大于,求的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学组合几何解答题