如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF是正方形且DE⊥平面ABCD.
(Ⅰ)求证:CF∥平面ADE;
(Ⅱ)若,求多面体ABCDEF的体积V.
(本小题10分)
如图,半径为2的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的体积。(其中∠BAC=30°)
如图,平面
(1)求证:平面平面;
(2)求二面角的大小;
(3)求三棱锥的体积.
(本小题满分12分)如图所示的长方体中,底面是边长为的正方形,为与的交点,, 为线段的中点。
(1)求证:平面;
(2)求三棱锥的体积。
如图,△中,,,,在三角形内挖去一个半圆(圆心在边上,半圆与、分别相切于点、,与交于点),将△绕直线旋转一周得到一个旋转体.
(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.
如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B和B′C′的中点.
(Ⅰ)证明:MN∥平面A′ACC′;
(Ⅱ)求三棱锥A′﹣MNC的体积.
(椎体体积公式V=Sh,其中S为底面面积,h为高)
(本小题满分12分)如图所示,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D为AB的中点,且CD⊥DA1.
(1)求证:BB1⊥平面ABC;
(2)求三棱锥B1-A1DC的体积.
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示。
(Ⅰ)求出该几何体的体积;
(Ⅱ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置(不需证明);若不存在,请说明理由。
已知某几何体的俯视图是如图1所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.
(Ⅰ)求该几何体的体积;
(Ⅱ)求该几何体的侧面积.
用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
如图,在直角梯形中,,,且.现以为一边向梯形外作矩形,然后沿边将矩形翻折,使平面与平面垂直.
(1)求证:平面;
(2)若点到平面的距离为,求三棱锥的体积.