(本小题10分)如图是一个几何体的主视图和俯视图,
(1)试判断这个几何体是什么几何体;
(2)请画出它的左视图,并求该左视图的面积.
已知正三角形三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过点作球的截面,则截面面积的最小值是( )
A. | B. | C. | D. |
一个圆锥被过顶点的平面截去了较少的一部分几何体,余下的几何体的三视图如下,则余下部分的几何体的体积为( )
A. | B. |
C. | D. |
如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,PA=2,BC=CD=2,∠ACB=∠ACD=.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若侧棱PC上的点F满足PF=7FC,求三棱锥P﹣BDF的体积.
已知三棱锥P-ABC中,PA=PB=PC=4,且PA、PB、PC两两垂直,若此三棱锥的四个顶点都在球面上,则这个球的体积为 cm3.
已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( ).
A. | B. | C. | D. |
(本小题满分10分)如图,、是以为直径的圆上两点,,,是上一点,且,将圆沿直径折起,使点在平面的射影在上,已知.
(1)求证:;
(2)求三棱锥的体积.
如图,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:
①与所成角的正切值是;
②∥;
③体积是;
④平面⊥平面;
其中正确的有 .(填写你认为正确的序号)
(本小题满分12分) 如图,已知平面,四边形为矩形,四边形为直角梯形,,,,.
(Ⅰ)求证:平面;
(Ⅱ)求三棱锥的体积.
某四面体的三视图如图所示,该四面体四个面中,面积最大的面的面积是( )
A.8 | B.10 | C. | D. |
已知某个几何体的三视图如下图(正视图的弧线是半圆),根据图中标出的数据,这个几何体的
体积是( )
A.288+36 | B.60 | C.288+72 | D.288+8 |