高中数学

(12分)已知函数
(1)在给定的直角坐标系内画出的图象;
(2)写出的单调递增区间(不需要证明);
(3)写出的最大值和最小值(不需要证明).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

广东某品牌玩具企业的产品以往专销欧州市场,在欧债危机的影响下,欧州市场的销量受到严重影响,该企业在政府的大力扶助下积极开拓国内市场,主动投入内销产品的研制开发,并基本形成了市场规模,自2010年9月以来的第n个月(2010年9月为每一个月),产品的内销量、出口量和销售总量(内销量与出口量的和)分别为bncnan(单位万件),分析销售统计数据发现形成如下营销趋势:bn+1aancn+1anba(其中ab为常数),且a1=1万件,a2=1.5万件,a3=1.875万件.
(1)求a,b的值,并写出an+1an满足的关系式;
(2)如果该企业产品的销售总量an呈现递增趋势,且控制在2万件以内,企业的运作正常且不会出现资金危机;试证明:anan+1<2.
(3)试求从2010年9月份以来的第n个月的销售总量an关于n的表达式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题满分16分)
为实数,且
(1)求方程的解;
(2)若满足,试写出的等量关系(至少写出两个);
(3)在(2)的基础上,证明在这一关系中存在满足.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)
已知二次函数满足:,且该函数的最小值为1.
⑴ 求此二次函数的解析式;
⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.
16、(本题共两小题,每小题6分,共12分)
(1)求值:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
函数的定义域为[-1,2],
(1)若,求函数的值域;
(2)若为非负常数,且函数是[-1,2]上的单调函数,求的范围及函数的值域。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题8分)某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元(精确到1万元).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题9分)已知函数.
(1) 判断函数的奇偶性; (2) 求该函数的值域;⑶ 利用定义法证明上的增函数

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知某种稀有矿石的价值(单位:元)与其重量(单位:克)的平方成正比,且克该种矿石的价值为元。
⑴写出(单位:元)关于(单位:克)的函数关系式;
⑵若把一块该种矿石切割成重量比为的两块矿石,求价值损失的百分率;
⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。(注:价值损失的百分率;在切割过程中的重量损耗忽略不计)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求 上,N在AD上,且对角线MN过C点,已知AB=4米,AD=3米,设AN的长为x米(x >3)。

(1) 要使矩形AMPN的面积大于54平方米,则AN的长应在什么范围内?
(2) 求当AM、AN的长度是多少时,矩形花坛AMPN的面积最小?并求出最小面积.

  • 更新:2021-08-02
  • 题型:未知
  • 难度:未知

(本小题满分12分)
某地区上年度电价为0.8元/kW·h,年用电量为akW·h,本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.4元/kW·h,经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/kW·h.
(Ⅰ)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;
(Ⅱ)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年至少增长20%?
(注:收益=实际用电量×(实际电价-成本价))

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
. 设R, 且, 定义在区间内的函数是奇函数.
(Ⅰ)求的取值范围;
(Ⅱ)讨论函数的单调性,并加以证明.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题8分)某村计划建造一个室内面积为800的矩形蔬菜温室。在温室内,沿左.右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)
某汽车公司购买了4辆大客车,每辆200万元,用于长途客运,预计每辆车每年收入约100万元,每辆车每年各种费用约为16万元,且从第二年开始每年比上一年所需费用要增加16万元.
(1)写出4辆车运营的总利润(万元)与运营年数的函数关系式;
(2)这4辆车运营多少年,可使年平均运营利润最大?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
(1)当x为何值时,取得最小值?证明你的结论;
(2)设f(x)在[-1,1]上是单调函数,求a的取值范围。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学三面角、直三面角的基本性质解答题