(本题8分)某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元(精确到1万元).
已知 { x n } 是各项均为正数的等比数列,且 x 1 + x 2 = 3 , x 3 ﹣ x 2 = 2 .
(Ⅰ)求数列 x n 的通项公式;
(Ⅱ)如图,在平面直角坐标系 xOy 中,依次连接点 P 1 ( x 1 , 1 ) , P 2 ( x 2 , 2 ) … P n + 1 ( x n + 1 , n + 1 ) 得到折线 P 1 P 2 … P n + 1 , 求由该折线与直线 y = 0 , x = x 1 , x = x n + 1 所围成的区域的面积 T n .
在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1 , A 2 , A 3 , A 4 , A 5 , A 6和4名女志愿者B 1 , B 2 , B 3 , B 4 , 从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
(Ⅰ)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率.
(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.
如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是 DF ̂ 的中点.
(Ⅰ)设P是 CE ̂ 上的一点,且 AP ⊥ BE ,求 ∠ CBP 的大小;
(Ⅱ)当 AB = 3 , AD = 2 时,求二面角 E ﹣ AG ﹣ C 的大小.
设函数 f ( x ) = sin ω x ﹣ π 6 + sin ω x ﹣ π 2 ,其中 0 < ω < 3 ,已知 f ( π 6 ) = 0 .
(Ⅰ)求 ω ;
(Ⅱ)将函数 y = f x 的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移 π 4 个单位,得到函数 y = g x 的图象,求 g x 在 [ ﹣ π 4 , 3 π 4 ] 上的最小值.
[选修4-5:不等式选讲]已知函数 f ( x ) = │x + 1 │–│x– 2 │ .
(1)求不等式 f ( x ) ≥ 1 的解集;
(2)若不等式 f ( x ) ≥ x 2 –x + m 的解集非空,求实数 m的取值范围.