集合满足=A,则称()为集合A的一种分拆,并规定:当且仅当时,()与()为集合A的同一种分拆,则集合A={}的不同分拆种数为多少?
坐标系与参数方程已知直线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线上求一点,使它到直线的距离最小,并求出该点坐标和最小距离.
几何证明选讲。如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1);(2)AB2=BE•BD-AE•AC.
(本小题共12分)已知函数,其中. (I)若函数有三个不同零点,求的取值范围;(II)若函数在区间上不是单调函数,求的取值范围.
(本小题共12分)已知曲线上任意一点P到两个定点F1(-,0)和F2(,0)的距离之和为4.(1)求曲线的方程;(2)设过(0,-2)的直线与曲线交于C、D两点,且为坐标原点),求直线的方程.
(本小题共12分)如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE (1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;