如图,椭圆的焦点在x轴上,左右顶点分别为A1,A,上顶点B,抛物线C1,C2分别以A1,B为焦点,其顶点均为坐标原点O,C1与C2相交于直线上一点P.(1)求椭圆C及抛物线C1,C2的方程;(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点,求的最小值.
已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为4和2,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.
如图,已知的三边长分别为,以点为圆心,为半径作一个圆. (1) 求的面积; (2)设为的任意一条直径,记,求的最大值和最小值,并说明当取最大值和最小值时,的位置特征是什么?
已知、两点的坐标分别为AB 其中。 (1)求的表达式;(2)若(为坐标原点),求的值; (3)若(),求函数的最小值。
已知向量,且,其中是的三内角,分别是的对边.(1)求的大小;(2)求的取值范围.
在中,分别是所对的边,已知,,三角形的面积为,(1)求C的大小;(2)求的值.