在极坐标系中,点坐标是,曲线的方程为;以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,斜率是的直线经过点.(1)写出直线的参数方程和曲线的直角坐标方程;(2)求证直线和曲线相交于两点、,并求的值.
叙述双曲线的定义,并建立适当的直角坐标系推导其标准方程.
已知<<<, (Ⅰ)求的值.(Ⅱ)求.
(本小题满分14分)已知函数 ,. (Ⅰ)当 时,求函数 的最小值; (Ⅱ)当 时,讨论函数 的单调性; (Ⅲ)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。
(本小题满分13分)分别以双曲线的焦点为顶点,以双曲线G的顶点为焦点作椭圆C。 (Ⅰ)求椭圆C的方程; (Ⅱ)设点P的坐标为,在y轴上是否存在定点M,过点M且斜率为k的动直线交椭圆于A、B两点,使以AB为直径的圆恒过点P,若存在,求出M的坐标;若不存在,说明理由。
(本小题满分12分)如图三,已知直三棱柱中,;分别是棱的中点。 (Ⅰ)求证:; (Ⅱ)求证:平面平面。