已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC。设AE =,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当=2时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-E的余弦值.
如图,在四棱锥中,底面为菱形,,为的中点. (1)若,求证:平面平面; (2)点在线段上,,试确定的值,使平面.
在中,角的对边分别为,且. (1)求的值; (2)若,且,求和的值.
设. (1)若,求最大值; (2)已知正数,满足.求证:; (3)已知,正数满足.证明:.
已知椭圆:()的右焦点,右顶点,右准线且. (1)求椭圆的标准方程; (2)动直线:与椭圆有且只有一个交点,且与右准线相交于点,试探究在平面直角坐标系内是否存在点,使得以为直径的圆恒过定点?若存在,求出点坐标;若不存在,说明理由.
)已知某音响设备由五个部件组成,A电视机,B影碟机,C线路,D左声道和E右声道,其中每个部件工作的概率如图所示,能听到声音,当且仅当A与B中有一个工作,C工作,D与E中有一个工作;且若D和E同时工作则有立体声效果. (1)求能听到立体声效果的概率; (2)求听不到声音的概率.(结果精确到0.01)